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Abstract—We present an algorithm for learning constraint and
objective function parameters of optimization-based controllers
used in multirobot systems. Our proposed approach uses position-
velocity measurements of each robot in the team to perform
this inference. The motivation to learn these parameters stems
from the need to infer an agent’s intent for accurate predictions
of motion in a multiagent system. We develop an extension of
our prior work in which we performed task learning assuming
constraint parameters were known. In this work, we perform
simultaneous learning of constraint and cost function parameters
by posing it as a constrained nonconvex optimization problem.
The cost function parameters that we learn encode information
of the task being performed by each robot in the team whereas
the constraint parameters encode information about individual
safety margin distances and size of the safe control set for each
robot. Our simulation results show the accurate reconstruction of
both the constraint and cost function parameters and we analyze
some failure cases.

I. INTRODUCTION

Optimization-based control synthesis techniques have be-
come very useful for synthesizing task-based controllers for
multirobot systems, which also guarantee collision avoidance
[7, 16]. While there is a lot of work on control synthesis for
various multirobot tasks, the problem of inferring tasks from
observations has only begun to receive attention in the context
of multirobot teams [14, 6, 8, 9]. Characterizing the drive
behind the actions of a robot team has several applications; for
example, an untrained multirobot team can learn by imitating
an expert team or one controlled by a human user [18].
Furthermore, addressing how easy it is for the intent of a team
to be inferred, reveals the vulnerability of the team to attacks
by an adversarial observer.

Algorithms based on inverse optimal control (IOC) can be
used to reverse engineer the reward function parameters of
a robot using measurements of its states and control inputs
[5, 10, 13]. However, these algorithms assume that the robot
minimizes a long-term cost function integrated over a horizon.
On the other hand, several existing controllers devised for
multirobot systems try to solve a reactive optimization problem
that minimizes deviation from a task-based controller while
satisfying safety constraints [15, 17]. The control inputs are
generated at every time step by solving a finite-dimensional
optimization problem instead of an infinite dimensional opti-
mal control problem. Some common examples of such con-
trollers include include barrier-function based quadratic pro-
grams (CBF-QPs) [1], safe-set controller [12] and recirpocal
velocity obstacles [15]. This prevents direct application of IOC
based approaches for inference of tasks involving multirobot
systems. Furthermore, even in the IOC literature, relatively

little work has been done on constraint inference. Objective
function parameters are inferred assuming constraints on the
states are known. Existing optimization based controllers used
in multirobot systems encode task information in the objective
and collision avoidance as constraints which depend on safety
margins. Thus, for the purpose of task inference, assuming
that the safety margins are known, is an unrealistic assumption
since the observed dynamics of the robots come through the
filter of both objective function and constraints.

Given these limitations, we are interested in addressing how
can an observer simultaneously infer the parameters of the
tasks as well as safety constraints by observing each robot in
a multirobot team given that the robots use optimization-based
controllers. Recent literature on inverse optimization (IO) has
developed approaches to address these questions. While IO
algorithms have been explored in finance [2] and OR [4], they
have not been explored as much in robotics. In this work,
we develop an extension to the algorithm proposed in [11]
and reformulate it to perform simultaneous task and constraint
inference of individual robots in a multirobot system. We
assume that robots use CBF-QPs for control synthesis. The
training data set needed to perform inference consists of
pairs of exogenous signals to the agent’s forward optimization
problem, and the agent’s decisions made in response to those
signals. In our context, we treat the positions of robots as the
exogenous signals and the velocities computed by CBF-QPs
as decisions, to perform task inference.

The outline of this paper is as follows. In Sec. II, we briefly
review the multirobot task completion and collision avoidance
control approach and pose a mathematical formulation of the
task and constraint inference problem. The main technical
contributions start from Sec. III. We develop an extension to
a previously proposed IO algorithm and develop a nonconvex
optimization algorithm for task + constraint inference infer-
ence. In Sec. IV, we present numerical results for inference
of controller gains, goal locations, safety margin distances and
size of safe control set of each robot in a multirobot system
using our proposed algorithm. We summarize our work in Sec.
V and conclude with directions for future work.

II. MULTIROBOT SAFE CONTROL AND TASK +
CONSTRAINT INFERENCE

A. The Forward Problem - Control for Task Completion

In our formulation, we assume that each robot uses CBF-
QPs to synthesize safe controllers for task completion [17].
Suppose there are M + 1 robots in the system. From the
perspective of an ego robot, the remaining M robots are



“obstacles” who all cooperate with the ego robot to avoid
collisions. In the following, the focus is on the ego robot.
This robot follows single-integrator dynamics i.e.

ẋ = u, (1)

where x = (px, py) ∈ R2 is its position and u ∈ R2 is its
velocity (i.e. the control input). Suppose there is a nominal
controller for performing the primary task given by

ûθtask
(x) = C(x)θtask + d(x). (2)

Here, θtask ∈ Rp is the task-parameter the observer wishes
to infer and C(x),d(x) are known functions. For example,
if the ego robot’s task is to reach a goal at xd, the robot
can use ûθtask

(x) = −kp(x − xd). If the observer wishes
to infer the goal xd (assuming the gain kp is known), then
θtask = xd, so choosing C(x) = kp, d(x) = −kpx gives
C(x)θtask + d(x) = −kp(x− xd).

In addition to performing the task, the ego robot must have
a mechanism to maintain a safe distance, say Ds with the
remaining robots to avoid collisions. To combine this safety
requirement with task-satisfaction, the ego robot solves a QP
that computes a controller closest to ûθtask

(x) and satisfies
M safety constraints as follows:

u∗ = arg min
u

‖u− ûθtask
(x)‖2

subject to A(x)u ≤ bθconst.(x).
(3)

Here A(x) ∈ RM×2, b(x) ∈ RM are defined such that the
jth row of A is aT

j and the jth element of bθconst.
is bj . For

CBF-QP based formulation, these are given by:

aT
j (x) := −∆xT

j = −(x− xo
j)T

bj(x) :=
γ

2
(‖∆xj‖2 −D2

s) ∀j ∈ {1, 2, . . . ,M}. (4)

Here {xo
j}Mj=1 are the positions of the remaining M robots.

γ > 0 is a parameter that describes the size of the set of
feasible controls that ensure collision-free motions. A larger
γ makes a larger set of controls available for safe collision
free operation to this QP. γ is typically a hyper-parameter that
is set by the control engineer much like the safety margin
distance Ds. As an observer, it is reasonable to assume that
the robots have this form of safety mechanism for control
synthesis, but assuming that the safety margins of each robot
are known is unrealistic. Thus, we define θconst. = (γ,Ds)
as the constraint parameters that are unknown to the observer
and must be inferred.

The ego robot solves this QP at every time step to determine
its optimal control u∗ which ensures safety parametrized by
θconst. while encouraging satisfaction of the task parametrized
by θtask. This control depends on both the task and safety
parammeters because the cost function of (3) depends on θtask
and constraints depend on θconst.. To emphasize this depen-
dence, let us denote it as u∗θ(x) where θ = (θtask,θconst.)
are the parameters the observer wishes to infer.

B. The Inverse Problem-Task + Constraint Inference

We focus here on the ego robot and pose the inference
problem for this robot. The inference approach we propose
can be easily extended to perform inference for multiple
robots in parallel, so the focus is on the ego robot. The
observer monitors this robot i.e. tracks its position x(t), its
velocity i.e. u∗θ(x(t)) and additionally, tracks the positions
of other robots i.e. {xo

j(t)}Mj=1. The observer’s problem is to
infer both the task parameter θtask and constraint parameters
θconst. = (γ,Ds) based on the knowledge that the optimal
control of the ego robot, u∗θ(x(t)), is computed using (3) in
response to the ego robot’s position at x(t) and obstacles’
positions at {xo

j(t)}Mj=1 (the exogenous signals). Let us state
all the assumptions on the observer’s knowledge.

Assumption 1. The observer knows that the ego robot’s cost
function is of the form ‖u− ûθtask

(x)‖2

Assumption 2. The observer knows the task functions
C(x), d(x) of ûθtask

(x) = C(x)θtask + d(x) in the cost.

Assumption 3. The observer knows the form of safety con-
straints A(x), bθconst.

(x) in (3) except for θconst..

We will operate in the batch setting i.e. our observer
will sample K signal-response pairs over some duration and
perform inference using this data. By signal-response pairs,

we refer to tuples of the form
((
x(k), {xo

j(k)}Mj=1

)
,u∗θ(k)

)
∀k ∈ {1, 2, · · · ,K}. Then, the observer uses all of these
K measurements in one step to compute θ by using an IO
algorithm, described next.

III. INVERSE OPTIMIZATION BASED INFERENCE

We know that the observer has access to state-control
measurements of the ego robot. Given assumptions 1-3 and
these measurements, the observer can develop an empirical
risk minimization algorithm that uses each sample of available
measurement to compute parameters θ. One candidate loss
that can be used to compute an estimate of risk is the KKT
loss [11]. In the context of our problem, this loss quantifies
the extent to which the observed optimal control violates the
KKT conditions of the robot’s optimization problem (3). Let’s
recall these conditions. The Lagrangian for (3) is

L(u,λ) = ‖u− ûθtask
(x)‖22 + λT (A(x)u− bθconst.(x)).

Let (u∗,λ∗) be the optimal primal-dual solution to (3). The
KKT conditions are [3]:

1) Stationarity: ∇uL(u,λ)|(u∗,λ∗) = 0 which gives

u∗ = ûθtask
(x)− 1

2
AT (x)λ∗. (5)

2) Primal Feasibility

A(x)u∗ ≤ bθconst.
(x) (6)

3) Dual Feasibility

λ∗ ≥ 0 (7)



4) Complementary Slackness

λ∗ �
(
A(x)u∗ − bθconst.

(x)
)

= 0 (8)

Using (5) and (8), the KKT loss is defined as follows

lKKT = lstat. + lcomp. slack. where,

lstat. =

∥∥∥∥u∗ − ûθtask
(x) +

1

2
AT (x)λ

∥∥∥∥2 (from (5))

lcomp−slack. =
∥∥λ� (A(x)u∗ − bθconst.(x)

)∥∥2 (from(8))
(9)

Using K observed signal-response pairs Ω(k) =
(x(k),u∗θ(k)), the observer poses an empirical risk
minimization problem that queries for θ and K multipliers
{λk}Kk=1 ∈ RM which minimize the total KKT loss:

θ̂, {λ̂k}Kk=1 = arg min
θ,{λk}Kk=1

K∑
k=1

lKKT (θ,λk,Ω(k))

subject to λk ≥ 0 ∀k ∈ {1, · · · ,K}
A(x(k))u∗θ(k) ≤ bθconst.(x)

θ ∈ Θ0

(10)

In this problem, the decision variables are the task parameter
θ and the Lagrange multipliers λk. The objective function in
(10) ‘softens’ the stationarity (5) and complementary slackness
(8) conditions. The constraints in (10) capture the primal and
(6) and dual feasibility condition from (7). The constraint
θ ∈ Θ0 captures our prior knowledge on θ. For example, the
constraint parameters γ,Ds are non-negative so θconst. ≥ 0.
Likewise, the proportional controller gains are non-negative
so that can be incorporated in Θ0. The loss function in (9)
is nonconvex in θconst. albeit convex in θtask, making it
nonconvex in θ. Therefore, the only option to solve (10) is to
use a generic nonlinear programming solver such as fmincon
to perform inference. Note that [11] developed a KKT loss
minimization algorithm for objective function inference. We
extend their approach for inferring constraint parameters in
addition to objective function parameters, which comes at the
cost of losing convexity of the resulting inference problem.

IV. RESULTS

We provide numerical results for inference of task param-
eters in a multirobot system using (10). We consider the task
where each robot is trying to reach a goal position while
avoiding collisions with every other robot. We will use these
algorithms to simultaneously estimate the desired goal xd, the
proportional gain kp which represent the task parameters along
with γ and Ds which are the constraint parameters. The robots
use ûθtask

= −kp(x−xd) as a nominal task-based controller
in (3). We write this as

ûθtask
=

[
−xx 1 0
−xy 0 1

]
︸ ︷︷ ︸

C(x)

 kp
kpxdx

kpxdy


︸ ︷︷ ︸
θtask

+ 0︸︷︷︸
d(x)

(11)

The constraint parameters θconst. = (γ,Ds). To evaluate
the repeatability of our approach, we conduct simulations
for five different arrangements of initial conditions and goals
and report the mean and standard deviations of reconstruction
errors. Further, we talk about failure cases where our algorithm
converged to local minima of (10) yet did not reconstruct the
true parameters.

A. Simulations where inference succeeds

In Fig. 1, we have five robots located in a 5m × 5m
area. Each robot has a unique color and is required to reach
a goal position denoted with the same color while staying
safe. Table I shows the gain reconstruction errors for different
parameters using (10). We conducted five simulations with
varying goal locations, initial conditions and parameters to
test the repeatability of our approach. As is evident from the
table, all these errors are very small, thus demonstrating the
effectiveness of our method.

B. Analysis of failure cases

We give intuitive arguments justifying the cases where (10)
will fail, referring the reader to [9] for a formal analysis.
Looking at the structure of (3), one can notice that it is
not necessary that optimal control u∗ will always explicitly
depend on both θtask and θconst.. For example, if there are
two robots in the system and their positions are very far
away from one another, then the safety constraints A(x)u ≤
bθconst.

(x) will most likely not get active, and thus inferring
exact values of θconst. would be difficult. However, the NLP
in (10) will still infer a feasible estimate of θconst. since
they must satisfy A(x(k))u∗(k) ≤ bθconst.

(x(k)) ∀k mea-
surements. Furthermore, in this situation, the task parameters
θtask will be inferrable. On the other hand, when the the
geometric arrangement of robots is crowded such that a given
robot interacts with many robots, then in this duration, safety
constraints will dominate (3) so that u∗ will not depend on
θtask. In this case, inferring θtask is difficult.

V. CONCLUSIONS

We considered the problem of inference of task and safety
constraint parameters of a multirobot system. In such a system,
robots use optimization based controllers to mediate between
task satisfaction and collision avoidance, thus the trajectories
they take, reflect how a purely task-based motion is warped to
ensure safety. This makes inference of task parameters non-
trivial. We considered the KKT loss minimization algorithm
to solve this problem in a batch setting and demonstrated
how accurate estimates of underlying parameters can be recon-
structed. In future, we plan to consider robust estimation in the
presence of model mismatch and measurement uncertainty.
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