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Abstract: This paper presents algorithms for learning parameters of optimization-based
controllers used in multiagent systems based on their position-velocity measurements. The
motivation to learn these parameters stems from the need to infer an agent’s intent (human
or robot) to facilitate accurate predictions of motion as well as efficient interactions in a
multiagent system. In this work, we demonstrate how to perform inference using algorithms
based on the theory of inverse optimization (IO). We propose QP-based reformulations of IO
algorithms for faster processing of batch-data to facilitate quicker inference. In our prior work,
we used persistency of excitation analysis for deriving conditions under which conventional
estimators such as a Kalman filter can successfully perform such inference. In this work, we
demonstrate that whenever these conditions are violated, inference of parameters will fail, be
it using IO-based algorithms or a UKF. We provide numerical simulations to infer desired goal
locations and controller gains of each robot in a multirobot system and compare performance
of IO-based algorithms with a UKF and an adaptive observer. In addition to these, we also
conduct experiments with Khepera-4 robots and demonstrate the power of IO-based algorithms
in inferring goals in the presence of perception noise.
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1. INTRODUCTION

There are several applications of planning and control for
multiple robots like search and rescue, sensor coverage
Cortes et al. (2004) and exploration Burgard et al. (2005).
Recently, optimization-based control synthesis techniques
are being used extensively for synthesizing task-based
controllers for multirobot systems, which also guarantee
collision avoidance Wang et al. (2017), Grover et al. (2019),
Van Den Berg et al. (2011), Grover et al. (2020b). The
inverse problem to task-based control is that of task
inference. Characterizing the drive behind the actions of
a robot team is useful for both predicting their future
behavior as well as imitating a robot team controlled
by human users Pierpaoli et al. (2019), Zhang and Shell
(2020). This is especially useful in settings where inferring
the strategies of an adversarial multirobot team can be
used to plan defensive actions.

Many inference algorithms based on the theory of inverse
optimal control (IOC) can be used to reverse engineer
the reward function parameters of a robot using mea-
surements of its states and control inputs Englert et al.
(2017), Majumdar et al. (2017), Johnson et al. (2013),
Molloy et al. (2018). However, all these algorithms assume
that the agent minimizes a long-term cost function inte-
grated over a horizon. On the other hand, several existing
controllers devised for multirobot systems use a reactive
collision avoidance mechanism with a task-based controller
Van den Berg et al. (2008), Wang et al. (2017). The control
inputs are generated at every time step by solving a finite-
dimensional optimization problem instead of an infinite
dimensional optimal control problem as is assumed in
IOC. Examples of such controllers include barrier-function

based quadratic programs (CBF-QPs) Ames et al. (2019)
and safe-set controller Liu and Tomizuka (2014). This
prevents direct application of IOC based approaches for
inference of tasks involving multirobot systems. Moreover,
these algorithms do not provide any bounds on the recon-
struction errors in the parameter estimates they generate.
Relatively little work has been done to explore identifia-
bility conditions under which this error will be zero.

Given these limitations, we are interested in addressing
how can an observer infer parameters of the tasks being
performed by individual robots in a team, by exploiting
that the underlying dynamics involve optimization in the
loop. Now, our observer can only observe the robots but
not intervene physically. Hence, parameter inference must
occur based on pure observational monitoring of input-
output signals, unlike system identification for manipu-
lators Yang et al. (2018) where manual inputs may be
designed to excite the robot to purposefully aid inference.
Given this lack of ability to interfere with the system, we
want to investigate when can the observer be confident
about inference solely based on measuring the robots’
states and the decisions made by them in those states.

Recent literature on inverse optimization (IO) has de-
veloped approaches to address these questions. These
methods focus on estimating cost/constraint parameters
of latent parametric optimization problems Ahuja and
Orlin (2001). While IO algorithms have been explored in
finance Bertsimas et al. (2012) and OR Carr and Lovejoy
(2000), they have not been explored as much in robotics.
In this work, we consider three previously developed IO
algorithms from Aswani et al. (2018),Bertsimas et al.
(2012) and Keshavarz et al. (2011) and reformat these



algorithms to perform task inference of individual robots
in a multirobot system. We assume that robots use CBF-
QPs for control synthesis, but our inference technique can
be used to perform inference of any other optimization
based controller as well Wei and Liu (2019). For these IO
algorithms, the training data set needed to perform infer-
ence consists of pairs of exogenous signals to the agent’s
forward optimization problem, and the agent’s decisions
made in response to those signals Esfahani et al. (2018).
In our context, we treat the positions of robots as the
exogenous signals and the velocities computed by CBF-
QPs as decisions, to perform task inference.

Further, by exploiting the structure of the agent’s con-
trol synthesis optimization, we derive quadratic program
based reformulations of the KKT-residual based inference
algorithm from Keshavarz et al. (2011) and suboptimal-
ity minimization based algorithm from Bertsimas et al.
(2012). Lastly, building on our prior work on persistency
of excitation analysis Grover et al. (2020a), we give con-
ditions when IO algorithms would fail to recover latent
parameters of tasks of robots. These conditions depend on
the number of obstacles that are perceived as potential
sources of collisions (active obstacles) by the ego robot
while it is performing its task. Our prior work derived
that inference is guaranteed to fail when the number of
such obstacles is more than or equal to two. In this work,
we show that this result is valid for IO based inference as
well. To substantiate this claim, we consider the task where
a robot must reach a goal while navigating around obsta-
cles and the observer’s problem is to infer the goal and
controller gain of the robot. Through repeated trials, we
demonstrate that each of the IO algorithms correctly infers
these parameters when the number of active obstacles is
less than two, while they produce large errors otherwise,
as expected based on our identifiability conditions.

The outline of this paper is as follows. In Sec. 2, we
briefly review the multirobot task completion and collision
avoidance control approach and pose a mathematical for-
mulation of the task inference problem. The main technical
contributions start from Sec. 3. We reformat previously
developed IO algorithms for the task inference problem.
Additionally, we derive novel QP-based reformulations of
these algorithms. In Sec. 4, we present numerical results for
inference of controller gains and goal location of each robot
in a multirobot system using the presented algorithms. We
also report results averaged over ten trials to show that
with greater number of active obstacles, inference algo-
rithms will fail. In Sec. 5, we show experimental results of
goal inference using these algorithms on Khepera-4 robots
and demonstrate that even in the presence of perception
noise, these algorithms provide accurate estimates of goals.
Finally, we summarize our work in Sec. 6 and conclude
with directions for future work.

2. MULTIROBOT SAFE TASK-BASED CONTROL
AND TASK INFERENCE

2.1 The Forward Problem - Control for Task Completion

In our formulation, we assume that each robot uses CBF-
QPs to synthesize safe controllers for task completion.
We refer the reader to Wang et al. (2017) for a detailed

treatment on this topic. Suppose there are M + 1 robots
in the system. From the perspective of an ego robot, the
remaining M robots are “cooperative obstacles” who are
all responsible for avoiding collisions amongst one another
and the ego robot while performing their own tasks. In the
following, the focus is on the ego robot. This robot follows
single-integrator dynamics i.e.

ẋ = u, (1)

where x = (px, py) ∈ R2 is its position and u ∈ R2 is its
velocity (i.e. the control input). Suppose there is a nominal
controller for performing the primary task given by

utaskθ (x) = C(x)θ + d(x). (2)

Here, θ ∈ Rp is the task-parameter the observer wishes to
infer and C(x),d(x) are known functions. For example, if
the ego robot’s task is to reach a goal at xd, the robot
can use utaskθ (x) = −kp(x−xd). If the observer wishes to
infer the goal xd, then θ = xd, so choosing C(x) = kp,
d(x) = −kpx gives C(x)θ + d(x) = −kp(x− xd).
In addition to performing the task, the ego robot must
have a mechanism to maintain a safe distance, say Ds with
the remaining robots to avoid collisions. To combine this
safety requirement with task-satisfaction, the ego robot
solves a QP that computes a controller closest to utaskθ (x)
and satisfies M safety constraints as follows:

u∗ = arg min
u

∥∥u− utaskθ (x)
∥∥2

subject to A(x)u ≤ b(x).
(3)

Here A(x) ∈ RM×2, b(x) ∈ RM are defined such that the
jth row of A is aTj and the jth element of b is bj . For
CBF-QP based formulation, these are given by:

aTj (x) := −∆xTj = −(x− xoj)T

bj(x) :=
γ

2
(‖∆xj‖2 −D2

s) ∀j ∈ {1, 2, . . . ,M}. (4)

Here {xoj}Mj=1 are the positions of the remaining M robots
and γ is a hyperparameter that governs the size of the safe-
control set. Typically γ is set at 1. The ego robot solves
this QP at every time step to determine its optimal control
u∗, which ensures safety while encouraging satisfaction of
the task parametrized by θ. This control depends on θ,
through the cost function of (3) since utaskθ (x) = C(x)θ+
d(x). To emphasize this, let us denote it as u∗θ(x).

Let us point out why this inference is non-trivial. The
dependence of u∗θ(x) on θ comes through the filter of
constraints and the objective function in (3). In a situation
where u∗θ(x) is solely determined by constraints, θ will not
be inferable because it is the cost function that depends
on θ not the constraints. Naturally, the observer may not
have means to deduce the extent of the dependence of
u∗θ(x) on the constraints, and this is precisely what makes
this problem challenging.

2.2 The Inverse Problem-Task Inference

We focus here on the ego robot and pose the inference
problem for this robot. The inference approach we propose
can be easily extended to perform inference for multiple
robots in parallel, so the focus is on the ego robot. The
observer monitors this robot i.e. tracks its position x(t), its
velocity i.e. u∗θ(x(t)) and additionally, tracks the positions
of other robots i.e. {xoj(t)}Mj=1. The observer’s problem is



to infer the task parameter θ based on the knowledge that
the optimal control of the ego robot, u∗θ(x(t)), is computed
using (3) in response to the ego robot’s position at x(t)
and obstacles’ positions at {xoj(t)}Mj=1 (the exogenous
signals). Let us state all the assumptions on the observer’s
knowledge.
Assumption 1. The observer knows that the ego robot’s

cost function is of the form
∥∥u− utaskθ (x)

∥∥2
Assumption 2. The observer knows the task functions
C(x), d(x) of utask(x) = C(x)θ + d(x) in the cost.

Assumption 3. The observer knows the form of safety
constraints A(x), b(x) in (3).

Most IO algorithms operate in the batch-setting. In the
context of our problem, this implies that the observer
will sample K signal-response pairs over some duration.
By signal-response pairs, we refer to tuples of the form((
x(k), {xoj(k)}Mj=1

)
,u∗θ(k)

)
∀k ∈ {1, 2, · · · ,K}. Then,

the observer uses all of these K measurements in one step
to compute θ by using an IO algorithm, described next.

3. IO-BASED ALGORITHMS FOR INFERENCE

We consider three prominent IO algorithms. Since different
authors follow different notations, we have used their
ideas but reformatted their notations and language to be
compatible with our robot task inference problem.

3.1 Predictability Loss Minimization

We know that the observer has access to state-control
measurements of the ego robot. Given assumptions 1-3
and these measurements, the observer can pose a parallel
surrogate problem akin to the one being solved by the
robot i.e. (3). In the surrogate problem, the observer treats
the unknown parameter θ as a tunable knob. The observer
modulates this knob until the observer’s predicted controls
computed by the solving the surrogate problem in response
to state x, match with the controls measured from the
robot’s motion when the robot is also in state x. To do
this tuning, the observer poses the following problem:

θ̂, {ûk}Kk=1 = arg min
θ,{uk}Kk=1

1

K

K∑
k=1

‖uk − u∗θ(k)‖2

such that uk solves (3) ∀k ∈ {1, · · · ,K}.
(5)

In this problem, the observer is learning both the param-
eter θ ∈ Rp as well as predictions of the optimal control
ûk ∈ R2 ∀k ∈ {1, 2, · · · ,K}. The cost function in (5)
is the empirical average of the deviations of the predicted
controls ûk from the observed optimal controls u∗θ(k). This
is known as the predictability loss and was proposed in
Aswani et al. (2018). Naturally, it makes sense to minimize
this loss only if the observer’s predicted controls solve the
forward problem (3) which is posed as a constraint in (5).
Since (3) is in itself an optimization problem, problem (5)
is a bi-level optimization which is known to be computa-
tionally difficult to solve. Aswani et al. (2018) proposed
a duality based reformulation of a bi-level optimization
to a single level problem. Applying their technique to our
robot task inference, we replace the constraint in (5) with

the optimality conditions of (3) i.e.:

uk solves (3) ⇐⇒ ∃ λk ∈ RM such that

(1)
∥∥uk − utaskθ (x(k))

∥∥2 ≤ h(λk,x(k),θ)
(2) λk ≥ 0
(3) A(x(k))uk ≤ b(x(k))

Here λk ∈ RM for each time instant k, are the M Lagrange
multipliers corresponding to the M collision avoidance
constraints of the ego robot in (3). h(λk,x(k),θ) is the
Lagrange dual function of (3) and is given by

h =
∥∥ũ− utaskθ (x)

∥∥2 + λTk (A(x(k))ũ− b(x(k)))

where ũ = utaskθ (x(k))− 1

2
AT (x(k))λk (6)

Given these three conditions, (5) can be re-posed as follows

θ̂,{ûk}Kk=1, {λ̂k}Kk=1 =

arg min
θ,{uk}Kk=1

,{λk}Kk=1

1

K

K∑
k=1

‖uk − u∗θ(k)‖2 ,

subject to
∥∥uk − utaskθ (x)

∥∥2 ≤ h(uk,λk,θ)

λk ≥ 0

A(x(k))uk ≤ b(x(k)) ∀k ∈ {1, · · · ,K}

(7)

Even though (7) is a single-level reformulation of (5), yet
it is non-convex because of the first constraint in (7).
Therefore, it can only be solved using generic nonlinear
programming solvers which tend to be slow, especially
when the number of measurements K is large. In Sec. 4,
we present numerical results using (7).

3.2 KKT Loss Minimization

Another candidate loss that can be used to compute an
estimate of risk is the KKT loss Keshavarz et al. (2011).
In our context, this loss quantifies the extent to which
the observed optimal control violates the KKT conditions
of the robot’s optimization problem (3). Let’s recall these
conditions. The Lagrangian for (3) is

L(u,λ) =
∥∥u− utaskθ (x)

∥∥2
2

+ λT (A(x)u− b(x)).

Let (u∗,λ∗) be the optimal primal-dual solution to (3).
The KKT conditions are :

(1) Stationarity: ∇uL(u,λ)|(u∗,λ∗) = 0 which gives

u∗ = utaskθ (x)− 1

2
AT (x)λ∗. (8)

(2) Primal Feasibility

A(x)u∗ ≤ b(x) (9)

(3) Dual Feasibility

λ∗ ≥ 0 (10)

(4) Complementary Slackness

λ∗ �
(
A(x)u∗ − b(x)

)
= 0 (11)

Using (8) and (11), the KKT loss is defined as follows

lKKT = lstat. + lcomp. slack. where,

lstat. =

∥∥∥∥u∗ − utaskθ (x) +
1

2
AT (x)λ

∥∥∥∥2 (from (8))

lcomp−slack. =
∥∥λ� (A(x)u∗ − b(x)

)∥∥2 (from(11)) (12)



UsingK observed signal-response pairs Ω(k) = (x(k),u∗θ(k)),
the observer poses an empirical risk minimization problem
that queries for θ and K Lagrange multipliers {λk}Kk=1 ∈
RM which minimize the total KKT loss:

θ̂, {λ̂k}Kk=1 = arg min
θ,{λk}Kk=1

K∑
k=1

lKKT (θ,λk,Ω(k))

subject to λk ≥ 0 ∀k ∈ {1, · · · ,K}.
(13)

In this problem, the decision variables are the task pa-
rameter θ and the Lagrange multipliers λk. The objective
function in (13) ‘softens’ the stationarity (8) and com-
plementary slackness (11) conditions. The constraints in
(13) capture the dual feasibility condition from (10). Given
the complicated nature of the loss function in (12), the
first instinct is to use a generic solver such as fmincon
to perform inference. However, these solvers tend to be
computationally slow, especially when the number of con-
straints and decision variables is large. We reformulate this
problem to a QP for faster inference.

Reformulating (13) as a QP

Define a vector µ = (θT ,λT1 , · · · ,λ
T
K)T ∈ Rp+MK which

is the decision variable of (13). Define matrices Eθ and
Eλk appropriately to extract θ and λk from µ as follows:

θ = Eθµ

λk = Eλk µ (14)

We can already re-pose the constraints in (13) as follows:

λk ≥ 0 ∀k ∈ {1, · · · ,K}
⇐⇒ Eλk µ ≥ 0 ∀k ∈ {1, · · · ,K}, (15)

which are convex by construction. Next, we reformulate
the cost function of (13). Recall that lKKT = lstat. +
lcomp.slack.. First we focus on lstat.k from (12). We have

lstat.k =

∥∥∥∥u∗(k)− utaskθ (x(k)) +
1

2
AT (x(k))λk

∥∥∥∥2

=

∥∥∥∥∥∥u∗(k)− d(x(k))︸ ︷︷ ︸
rk

−C(x(k))θ +
1

2
AT (x(k))λk

∥∥∥∥∥∥
2

=

∥∥∥∥rk − C(x(k))Eθµ+
1

2
AT (x(k))Eλk µ

∥∥∥∥2
=
∥∥∥rk − F̃kµ∥∥∥2

= µT F̃Tk F̃kµ− 2rTk F̃kµ+ rTk rk (16)

In the equation above,

F̃k = C(x(k))Eθ − 1

2
AT (x(k))Eλk (17)

Similarly, using (12), we reformulate lcomp. slack.k :

lcomp. slack.k =

∥∥∥∥∥∥∥λk �
(
A(x(k))u∗(k)− b(x(k))

)︸ ︷︷ ︸
wk

∥∥∥∥∥∥∥
2

=
∥∥Eλk µ�wk

∥∥2
= µTEλTk WkE

λ
k µ (18)

where Wk = diag
(
[w2

k(1),w2
k(2), · · · ,w2

k(M)]
)
. Adding

(16) and (18) gives

lKKTk = µT F̃Tk F̃kµ+ µTEλTk WkE
λ
k µ− 2rTk F̃kµ+ rTk rk

= µT
(
F̃Tk F̃k + EλTk WkE

λ
k

)︸ ︷︷ ︸
Qk

µ+ (−2rTk F̃k)︸ ︷︷ ︸
vT
k

µ+ rTk rk︸ ︷︷ ︸
sk

= µTQkµ+ vTkµ+ sk (19)

Thus, the total loss over all K measurements from the cost
function of (13) is obtained by summing (19) as follows:

K∑
k=1

lKKTk =

K∑
k=1

(
µTQkµ+ vTkµ+ sk

)

= µT
( K∑
k=1

Qk

)
︸ ︷︷ ︸

Q

µ+

( K∑
k=1

vTk

)
︸ ︷︷ ︸

vT

µ+

( K∑
k=1

sk

)
︸ ︷︷ ︸

s

= µTQµ+ vTµ+ s (20)

From (20), it is evident that the total KKT loss in (13) is
indeed in quadratic in the decision variables µ. Hence, we
can re-pose (13) using the reformulated cost in (20) and
constraints in (15) as the following QP:

µ̂ = arg min
µ

µTQµ+ vTµ

subject to Eλk µ ≥ 0 ∀k ∈ {1, · · · ,K}.
(21)

(21) is thus a QP-based reformulation of (13), and is
amenable to faster solutions using existing QP-solvers.

3.3 Sub-optimality Minimization

Bertsimas et al. (2015) proposed data-driven techniques to
infer unobservable parameters of models describing Nash
equilibria in game theory. They combined ideas from in-
verse optimization with variational inequalities to develop
data-driven techniques for estimating the parameters of
these models from observed equilibria. Following their
approach, we show how to reformat (3) so that we can
leverage their approach for inferring robot task parameters
θ. Consider a general optimization problem

minimize Fθ(ξ)

subject to ξ ∈ X (22)

Here θ are parameters of the convex cost function F known
to the agent solving (22) and X ⊂ Rn is a convex set.

Assumption 4. X can be represented as the intersection
of a small number of conic inequalities in standard form,
X = {ξ ∈ Rn|Gξ = h, ξ ≥ 0}.

Assumption 5. X satisfies a Slater’s condition.

The following result from Bertsimas et al. (2015) charac-

terizes necessary and sufficient conditions for ξ̂ to be an
ε-optimal solution to (22):

Theorem 1. Bertsimas et al. (2015) Assuming X satis-

fies 4-5, an observed decision ξ̂ is an ε-optimal solution to
(22) if and only if ∃ y such that GTy ≤ ∇ξFθ(ξ)|ξ̂ and

ξ̂
T
∇ξFθ(ξ)|ξ̂ − h

Ty ≤ ε

The inverse problem requires an observer to infer θ based
on the knowledge that the agent solves (22) using K

samples of ξ̂ which are known to be ε-optimal solutions
to (22). Since the observer does not know the subopti-



mality of a decision ε, the observer poses a suboptimality
minimization problem querying for εk,yk,θ as follows:

θ̂, {ε̂}Kk=1, {ŷk}Kk=1 = arg min
θ,{ε}K

k=1
,{yk}Kk=1

K∑
k=1

ε2k

subject to GTyk ≤ ∇ξFθ(ξ)|ξ̂k
ξ̂
T

k∇ξFθ(ξ)|ξ̂ − h
Tyk ≤ εk ∀k ∈ {1, · · · ,K}

(23)

Notice that the cost function in (23) penalizes the subopti-
mality of observed solutions ξk whereas the constraints are
necessary and sufficient conditions for observed decisions
ξk to be εk-optimal solutions of (22) based on Theorem 1.

Robot task inference using (23)
In the context of inferring task parameters of a robot,
recall that our ego robot solves (3) where the task param-
eters are involved in the cost function. This optimization
problem is a specific instance of the general problem in
(22), therefore we need to reformat the ego-robot’s op-
timization problem (3) to (22) to facilitate inference of
θ using (23). Recall that controls in (3) are required to
satisfy safety constraints

A(x)u ≤ b(x). (24)

On the other hand, the feasible set X in (22) is required
to satisfy assumptions 4-5. To reformat (24) so that these
assumptions are satisfied, define u1 ≥ 0 and u2 ≥ 0 such
that u = u1−u2. One choice satisfying these requirements
is u1 = u+ |u|,u2 = |u|. Define the following variables,

z = (b(x)−A(x)u) ∈ RM (25)

ξ = (u1,u2, z) (26)

Then, it is evident that

A(x)u ≤ b(x) ⇐⇒ A(x)(u1 − u2) ≤ b(x)

⇐⇒ A(x)(u1 − u2) + z = b(x), z ≥ 0 (27)

Define G and h required in assumption 4 as follows

G(x) :=
[
A(x),−A(x), IM

]
h(x) := b(x) (28)

where IM is the M ×M identity matrix. Then, it is easy
to verify that G(x)ξ = h(x). We have

A(x)u ≤ b(x)

⇐⇒ u1 ≥ 0,u2 ≥ 0, z ≥ 0, A(x)(u1 − u2) + z = b(x)

⇐⇒ ξ ≥ 0 and G(x)ξ = h(x) (29)

Recall that the cost function in (3) is

Fθ(u) =
∥∥u− utaskθ (x)

∥∥2 (30)

So we define a matrix Eu appropriately so that u = Euξ.
The cost then becomes a function of ξ:

Fθ(ξ) =
∥∥Euξ − utaskθ (x)

∥∥2
=⇒ ∇ξFθ(ξ) = 2EuT (Euξ − utaskθ (x))

= 2EuT (Euξ − C(x)θ − d(x))

Thus, with (3) re-posed as (22), the signal-response pairs
for inference are no longer (x(k),u∗(k)), rather they are
(x(k), ξ∗(k)). To construct ξ∗(k) from u∗(k), define

u1(k) := u∗(k) + |u∗(k)|
u2(k) := |u∗(k)|
z(k) := b(x(k))−A(x(k))u∗(k)

=⇒ ξ∗(k) := (u1(k),u2(k), z(k)). (31)

Note that u1(k),u2(k) ≥ 0 because of the way we defined
them. |u∗(k)| is the absolute value of u∗(k) taken element
wise. zk ≥ 0 because the measured controls u∗(k) must
satisfy the safety constraints (24). Thus, ξ(k) ≥ 0 as is
required by assumption 4. Assumption 5 is automatically
satisfied by all QPs (Boyd and Vandenberghe (2004)),
and by extension, by (3). Once again, (23), in the form
presented, can only be solved by general NLP solvers. In
the next section, we show how to reformulate this as a QP.

Reformulating (23) as a QP
In this section, we reformulate this problem as a QP.
Define a vector µ = (θT , ε1, · · · , εK ,yT1 , · · · ,yTK)T which
is the decision variable of (23). Define matrices Eθ,Eεk E

y
k

appropriately to extract θ, εk and λk from µ as follows:

θ = Eθµ

εk = Eεkµ

yk = Eykµ (32)

Based on these definitions, we can already re-pose the cost
function in (23) as follows:

K∑
k=1

ε2k =

K∑
k=1

‖Eεkµ‖
2

= µT
( K∑
k=1

EεTk Eεk

)
︸ ︷︷ ︸

Q

µ (33)

The constraints can be re-posed as

GTyk ≤ ∇ξFθ(ξ)|ξ∗(k) ⇐⇒
GT (x(k))Eykµ ≤ 2EuT (Euξ∗(k)− C(x(k))Eθµ− d(x(k))

After some rearrangement, this can be re-posed as an
inequality in µ:

H1µ ≤ g1 (34)

Similarly the second constraint in (23) can be re-posed as

ξ∗T∇ξFθ(ξ)|ξ∗(k) − hTyk ≤ εk ⇐⇒

2ξ∗T (k)EuT
(
Euξ∗(k)− C(x(k))Eθµ− d(x(k)

)
− hT (x(k))Eykµ ≤ E

ε
kµ (35)

which after some rearrangement gives

H2µ ≤ g2 (36)

The expressions for H1, g1, H2, g2 can be found in the
appendix. Combining the quadratic cost in (33) with the
affine constraints (34) and (36), we arrive at the following
QP-based formulation:

µ̂ = arg min
µ

µTQµ

subject to H1µ ≤ g1 ∀k ∈ {1, 2, · · · ,K}
H2µ ≤ g2 ∀k ∈ {1, 2, · · · ,K}.

(37)

Thus, the convexity of this formulation allows for faster
inference on batch-data by exploiting existing QP solvers.
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Fig. 1. Each robot is navigating towards its goal while avoiding collisions with other robots.

4. SIMULATION RESULTS

We provide numerical results for inference of task param-
eters in a multirobot system using (7), (21) and (37). We
consider the task where each robot is trying to reach a
goal position while avoiding collisions with every other
robot. We will use these algorithms to estimate the desired
goal xd and proportional gain kp for each robot by using
their positions and velocities collected over some time.
We also describe situations where these estimators will
fail to identify these parameters, which occur when the
measurements fail to satisfy certain “richness” criteria.

4.1 Gain and Goal inference in a multirobot setting

In Fig. 1, we have five robots located in a 5m × 5m area.
Each robot has a unique color and is required to reach a
goal position denoted with the same color while staying
safe. The robots use utaskp∗

d
= −kp(p − p∗d) as a nominal

task-based controller in (3). The inference algorithm must
compute estimates of p̂d and gain k∗p for each robot.
Table 1 shows the gain reconstruction errors for different
algorithms. and Table 2 presents the goal-reconstruction
errors. As is evident from the table, all three algorithms
produce 0 error, meaning that they are able to correctly
estimate both the correct goal and gain for each robot.

Table 1. Gain Estimation Errors |kp − k∗p|

Robot
ID

Predict. loss
algorithm

KKT loss al-
gorithm

Suboptimality
loss algorithm

1 0.0000 0.0000 0.0000
2 0.0001 0.0000 0.0000
3 0.0002 0.0000 0.0000
4 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000

Table 2. Goal Estimation Errors ‖p̂d − p∗d‖ in [m]

Robot
ID

Predict. loss
algorithm

KKT loss al-
gorithm

Suboptimality
loss algorithm

1 0.0000 0.0000 0.0000
2 0.0005 0.0000 0.0000
3 0.0012 0.0000 0.0000
4 0.0002 0.0000 0.0000
5 0.0001 0.0000 0.0000

4.2 Inference when Identifiability Conditions are Violated

In our prior work Grover et al. (2020b), we used persis-
tency of excitation analysis to identify conditions where

(a) No obstacle is active (b) One obstacle is active

(c) Two obstacles are active

Fig. 2. As the robot navigates to its goal, the success
of inference depends on the number of obstacles
that it actively interacts with. In Fig (c) there are
two active interactions (dark), so per Theorem 3,
goal/gain inference will fail.

conventional estimators such as a Kalman filter would fail
to infer task parameters θ using position and velocity mea-
surements of a robot. Given the new algorithms considered
in the current work, we want to stress test these conditions
against these new algorithms. To keep this paper self-
contained, we present these conditions only at a high-
level. For an intuitive understanding, we present results
for a single robot navigating amongst static obstacles.
The inference problem is to determine the goal of this
robot and its controller gain using its position and velocity
measurements. The first condition, stated in Theorem 2
identifies a situation when inference will be successful.

Theorem 2. [Grover et al. (2020b)] If ∀t ∈ [0, T ], no
constraint is active, then the observer can always estimate
the goal and gain using x(t),u∗(x(t)) ∀t ∈ [0, T ] (unless
the robot is not already at goal).



No. of Active
Obstacles

Predictability
loss algorithm
(7)

KKT loss al-
gorithm (21)

Suboptimality
minmization
algorithm (37)

Unscented
Kalman Filter Adaptive Ob-

server

0 0.0003 ± 0.0006 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0241 ± 0.0000 0.0220 ± 0.0018

1 0.0311 ± 0.0456 0.0000 ± 0.0000 0.0000 ± 0.0000 0.2897± 0.3070 0.0214 ± 0.0180

2 6.3704 ± 2.4477 5.8848 ± 3.7777 4.3371 ± 2.2358 5.6569 ± 0.3070 5.6252 ± 0.0180
Table 3. Goal inference errors when the number of active obstacles is 0 (top row), 1 (middle row) and 2 (bottom row)

By an active constraint, we refer to the constraint of (3)
which is active (for which equality holds). Intuitively, this
refers to an active interaction with an obstacle, because
that obstacle is a potential risk of collision. This result says
that if the robot does not have active interactions with any
obstacles, then the position-velocity measurements of the
robot will be so rich that goal/gain inference will always
be successful. One situation when this occurs is when the
obstacles are far enough from the robot such that the robot
can freely use utaskθ as shown in Fig. 2(a)). We evaluate
IO algorithms presented in this paper and compare them
with a UKF and an Adaptive observer (from Grover
et al. (2020b)) to stress-test this theorem for inferring the
location of the goal. Table 3 shows the numerical results for
this situation. We show the mean and standard deviation
of goal estimation errors averaged over ten trials. In each
trial, we varied the final goal position of the robot and
locations of obstacles while keeping the initial position of
the robot identical. As is evident from the errors in the first
row, goal inference is always successful for all estimators.
Let us look at a situation where inference will fail.

Theorem 3. [Grover et al. (2020b)] If ∀t ∈ [0, T ],
two or more than two constraints are active, then the
observer cannot estimate either the goal or the gain, using
x(t),u∗(x(t)) ∀t ∈ [0, T ].

In this situation, the robot has active interactions with
either two or more than two obstacles while navigating
towards its goal. Consequently, this theorem says that
the position-velocity measurements are not rich enough to
facilitate correct inference of either the goal or the gain.
Intuitively, this occurs because of the following. We know
that the robot has two degrees of freedom in its control
and when there are two or more obstacles to actively avoid,
both of those degrees of freedom are exhausted in repelling
the obstacles leaving no freedom dedicated for the task.
Therefore, the motion that the observer measures does
not have any explicit information about the task, which is
why task inference will fail. Figure 2(c) shows an example
simulation where the robot is moving towards its goal.
There are several obstacles, two of these, shown in black,
are the ones active during the robot’s motion. Hence, for
this simulation, the inference algorithm will not be able to
deduce the goal or the gain. This is indeed evident from
the large errors in the third row in Table 3.

In the middle of the spectrum is the situation where there
is exactly one active obstacle to avoid. Figure 2(b) shows a
simulation where the robot is navigating towards its goal,
and obstacle 3 remains active during the robot’s journey
to the goal. Since the robot can use one degree of freedom
to avoid that obstacle, and use the remaining degree of
freedom to perform the task, its position-velocity measure-

ments will have information about the task. Therefore, it
is possible to infer either the goal or the gain. The second
row in Table 3 shows the errors in estimating the goal.
These errors are negligible, and comparable to those in the
first row, demonstrating that goal inference is successful.

5. EXPERIMENTAL RESULTS

We also performed physical experiments with three Khep-
era robots to analyze the effect of noise in hardware and
perception sensing on the estimation of goals. We con-
ducted experiments with three robots and performed a
total of eight runs in which the initial positions of the
robots, their gains and safety margins were varied, but
their individual respective goal locations were kept same
through the runs. Table 4 reports the errors of these
individual runs for the three algorithms along with the
mean and standard deviations. The videos of these exper-
iments can be found at https://bit.ly/3s7yovL. From
the numerical values of the errors, it is evident that all
algorithms are able to obtain estimates of the goals that
are within a maximum of 5cms of the true goals.

Table 4. Goal Errors in Experiments ‖p̂d − p∗d‖ in [m]

Run
Num-
ber

Predict. loss
algorithm

KKT loss al-
gorithm

Suboptimality
loss algorithm

1 0.0166 0.0073 0.0566
2 0.0502 0.0185 0.1394
3 0.0171 0.0079 0.0133
4 0.0292 0.0218 0.0178
5 0.0047 0.0046 0.0332
6 0.0057 0.0058 0.0408
7 0.0043 0.0041 0.0951
8 0.0053 0.0050 0.0281
Mean 0.0166 0.0094 0.0530
Std. 0.0151 0.0064 0.0406

6. CONCLUSIONS

We considered the problem of inference of parameters of
tasks being performed by robots in a multirobot system. In
such a system, robots use optimization based controllers to
mediate between task satisfaction and collision avoidance,
thus the trajectories they take, reflect how a purely task-
based motion is warped to ensure safety. This makes infer-
ence of task parameters non-trivial. We considered several
IO algorithms to solve this problem in a batch setting
and demonstrated how accurate estimates of underlying
parameters can be reconstructed. Furthermore, we derived
QP based reformulations of the KKT-loss minimization
and suboptimality minimization algorithms. Finally, using

https://bit.ly/3s7yovL


our previously derived criteria for successful inference,
we demonstrated that these IO algorithms may fail to
identify the correct underlying task parameters whenever
the ego robot interacts with two or more obstacles. In
future, we plan to extend this work to simultaneously learn
parameters of the cost function as well as constraints in
the ego-robot’s forward problem. We also plan to consider
robust estimation in the presence of model mismatch and
measurement uncertainty.

7. APPENDIX

The expressions for H1, g1, H2, g2 in (34) and (36) are

H1 = GT (x(k))Eyk + 2EuTC(x(k))Eθ

g1 = 2EuT (Euξ∗(k)− d(x(k)))

H2 = −
(

2ξ∗T (k)EuTC(x(k))Eθ + 2ξ∗T (k)EuThT (x(k))Eyk

+ Eεk

)
g2 = −2ξ∗T (k)EuTEuξ∗ + 2ξ∗T (k)EuTd(x(k)) (38)
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