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Abstract. In this paper, we consider the problem of protecting a high-
value area from being breached by sheep agents by crafting motions for
dog robots. We use control barrier functions to pose constraints on the
dogs’ velocities that induce repulsions in the sheep relative to the high-
value area. This paper extends the results developed in our prior work
on the same topic in three ways. Firstly, we implement and validate our
previously developed centralized herding algorithm on many robots. We
show herding of up to five sheep agents using three dog robots. Secondly,
as an extension to the centralized approach, we develop two distributed
herding algorithms, one favoring feasibility while the other favoring opti-
mality. In the first algorithm, we allocate a unique sheep to a unique dog,
making that dog responsible for herding its allocated sheep away from the
protected zone. We provide feasibility proof for this approach, along with
numerical simulations. In the second algorithm, we develop an iterative
distributed reformulation of the centralized algorithm, which inherits the
optimality (i.e. budget efficiency) from the centralized approach. Lastly,
we conduct real-world experiments of these distributed algorithms and
demonstrate herding of up to five sheep agents using five dog robots.
Videos of these results are available at https://bit.ly/3bZq0dB.
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1 Introduction

Recent developments in robotics and sensing have created significant interest
among researchers to deploy multiple robots to operate cooperatively towards
achieving a common goal. Many works have developed techniques to tackle real-
world problems using multi-robot systems (MRS), like conducting surveys or
automating warehouses [1,2], [3]. The major developments in MRS for enabling
multiple robots to behave cooperatively have been based on interactions within
a single team, i.e., a robot interacts with other robots in its group to achieve a
given objective [4,5]. The main features of these types of algorithms are a) local
interaction, b) collision-free motion within the group, and c) achieving collective
behavior using local interaction [6].
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In literature, there are studies on MRS that involve interaction between mul-
tiple groups of agents. Here, along with the local interaction with group members,
the individuals also interact with an external agent from another group. An ex-
ample of this is a scenario where a group of adversarial robots has a goal of their
own that might damage a given high-value unit. Here, a group of defenders must
interact with the adversarial robots to ensure the safety of the unit. [7,8]. In this
paper, we propose a provably correct controller for the group of defenders (“dog
robots”) to prevent an adversarial group (the “sheep robots”) from breaching a
protected zone. This is challenging because dog robots do not control the sheep
robots directly; rather have to rely on the interaction dynamics between the dogs
and sheep to influence the sheep’s behavior.

In our prior work [9]1, we developed a centralized algorithm to solve this
problem using control barrier functions. In this work, a) we provide more ex-
perimental validation of the centralized algorithm, b) propose two distributed
algorithms, and c) provide simulations and experiments to validate these algo-
rithms. Our formulation computes the velocity of each dog locally to prevent
sheep from breaching the protected zone(s). In the first distributed algorithm,
we allocate each sheep to a unique dog and pose a constraint on that dog’s
velocity to herd its allocated sheep away from the protected zone. We provide
proof of feasibility of this approach, thus showing that whenever the number
of sheep and dogs are equal, the herding problem is well-posed. Our previously
proposed centralized algorithm lacked this feasibility guarantee. However, it did
not necessitate equal numbers of dogs and sheep; in fact, in many experiments,
fewer dogs than sheep were sufficient to herd all the sheep away. This obser-
vation led us to develop the second algorithm. In this algorithm, we construct
an iterative distributed approach that asymptotically attains the same veloci-
ties as computed by the centralized approach, thereby attaining the same total
optimality (measured in terms of the total movement the dogs exhibit) as the
centralized approach and obviating the need to have equal numbers of dogs and
sheep. We build on the dual-decomposition algorithms proposed in [10,11] for de-
veloping this distributed algorithm. Both of our proposed distributed algorithms
are compositional in nature i.e., we can protect multiple zones by including more
constraints, as shown in figure 1(c). To highlight the performance of our formu-
lation, we provide results from numerical simulations showing the success of our
approach for multiple dogs against multiple sheep. Finally, we demonstrate our
algorithm on real robots and show multiple dog robots successfully preventing
the breaching of protected zones against multiple sheep robots.

The outline of this paper is as follows: in section 2, we give a brief review of
the prior work in this area. In section 3, we provide a mathematical formulation
of the problem statement. In section 4, we show how to use control barrier
functions to pose constraints on dog velocities. Section 5 provides simulations
and experimental results to demonstrate the proposed approach. Finally, we
summarize our work in section 6 along with our directions for future work.

1 accepted in IEEE Conference on Decision and Control 2022
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2 Prior Work

The framework of multi-group interaction within MRS has many applications
beyond the adversarial problem statements. The shepherding problem is an ex-
ample of such a category. In [12,13], the authors have proposed methods to
enable multiple shepherd agents to influence a flock of sheep by modeling the
interaction as repulsion forces. The Robot Sheepdog Project [14,15] conducted
a real-world demonstration of a shepherding algorithm where a group of mobile
ground robots cooperatively herded a flock of ducks to a given goal location.

In the literature, there are several works on non-cooperative shepherding as
an example of a multi-group interaction type problem. The works like [13], [16],
[17], [18], [19], [20]. deal with a problem where the sheep robots do not exhibit
adversarial behavior. They do not have any goals of their own. However, they
experience a repulsive force from the dog robots, which is exploited to produce
the desired behavior in the sheep robots. For example, collecting all the sheep
at some location and then driving them to a target goal.

Differently from prior work, our sheep may or may not be adversarial. We call
them adversarial if their goal lies inside the protected zone and non-adversarial
otherwise. Our safe control synthesis approach remains the same regardless. The
dog robots observe and generate their control commands considering the cohesion
between the sheep robots, the attraction to their goal location, and the repulsion
experienced by them from the dog robots. And as we use control barrier functions
to generate the constraints on the velocity of the dog robots, it only requires the
dynamics of the sheep to be represented as a symbolic function. Thus allowing
for the sheep to experience any kind of attractive or repulsive forces.

3 Problem Formulation

Consider a scenario with n sheep agents flocking towards a common goal loca-
tion. One commonly assumed model for flocking is the Reynolds-Boids dynamics
[21] that considers inter-sheep cohesive forces, inter-sheep repulsive forces, and
attraction to a common goal. In the presence of dog agents, each sheep’s dy-
namics would include repulsive forces from each dog robot. While en route to
their goal, the sheep, having no knowledge about high-value regions in workspace
(protected zones), pose a risk of breaching them. Thus, our problem is to orches-
trate the motions of dog robots by capitalizing on the repulsions that the sheep
experience from the dogs to prevent this breaching. Next, we pose this problem
in formal terms.

Consider the protected zone P ⊂ R2 as a disc centered at xP with radius
Rp, i.e., P := {x ∈ R2| ∥x−xP ∥ ≤ Rp}. We denote the flock of sheep as S and
the position of the ith sheep as xSi

∈ R2. The collective positions of all sheep
is denoted as xall

S := (xS1
,xS2

, ...,xSm
). Similarly, we denote the set of all dogs

using D. The position of the kth dog is xDk
∈ R2 and the positions of all dogs

collectively is xall
D := (xD1 ,xD2 , ...,xDn). Each sheep follows single integrator
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dynamics ẋSi
:= f i(xS1

, ...,xSn
,xD1

, ...,xDn
), given by

ẋSi
= uSi

= kS
∑

j∈S\i

(
1− R3

S

∥xSj
− xSi

∥3

)
(xSj

− xSi
)

︸ ︷︷ ︸
inter-sheep cohesion and repulsion

+ kG (xG − xSi
)︸ ︷︷ ︸

attraction to goal

+ kD
∑
l∈D

xSi
− xDl

∥xSi − xDl
∥3︸ ︷︷ ︸

repulsion from dogs

(1)

Here, RS is a safety margin that each sheep tends to maintain with every other
sheep, xG is the sheep’s desired goal and kS , kG and kD are proportional gains
corresponding to the attractive and repulsive forces. We model each dog as a
velocity controlled robot with the following dynamics:

ẋDk
= uDk

∀k ∈ {1, 2, · · · , n} (2)

Before posing the problem, we state some assumptions on the dogs’ knowledge:

Assumption 1. The dog robots have knowledge about the sheep’s dynamics i.e.
(1) and can measure the sheep’s positions accurately.

Assumption 2. Each dog robot can measure the velocities of other dog robots
(by using numerical differentiation, for example).

Problem 1. Assuming that the initial positions of the sheep xSi
(0) /∈ P ∀i ∈

S, the dog robots’ problem is to synthesize controls {uD1 , · · · ,uDn} such that
xSi(t) /∈ P ∀t ≥ 0 ∀i ∈ S.

4 Controller Design

In this section, we show two approaches to solve Problem 1, building on our
previously proposed centralized algorithm [9]. Define a safety index h(·) : R2 −→
R that quantifies the distance of Si from P:

h(xSi
) = ∥xSi

− xP ∥2 − (r +Rp)
2 (3)

Here r is a safety buffer distance. Thus, we require h(xSi(t)) ≥ 0 ∀t ≥ 0. We
define x = (xall

S ,xall
D ) as the aggregated state of all sheep and all dogs. To

ensure, h(xSi
(t)) ≥ 0 ∀t ≥ 0, we treat h(·) as a control barrier function require

its derivative to satisfy

ḣ(x) + p1h(xSi
) ≥ 0. (4)

Here p1 is a design parameter and is chosen based to satisfy
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p1 > 0 and p1 > − ḣ(x(0))

h(xSi
(0))

. (5)

The first condition on p1 requires that the pole is real and negative. The second
depends on the initial positions x(0) of all the sheep and dogs relative to the
protected zone. Note that the constraint in (4) does not contain any dog velocity
terms, which is what we require to control each dog. Therefore, we define the
LHS of (4) as another control barrier function v(x) : R4n −→ R:

v = ḣ+ p1h, (6)

and require its derivative to satisfy the constraint: v̇(x) + p2v(x) ≥ 0. Here p2
is another design parameter which must satisfy

p2 > 0 and p2 > − ḧ(x(0)) + p1ḣ(x(0))

ḣ(x(0)) + p1h(xSi
(0))

(7)

Using (3), (6) and the constraint on the derivative, we get

ḧ(x) + αḣ(x) + βh(xSi) ≥ 0 (8)

where α := p1 + p2 and β := p1p2. The derivatives of h(·) are:

ḣ(x) = 2(xSi
− xP )

T ẋSi
= 2(xSi

− xP )
Tf i(x) (9)

ḧ(x) = 2fT
i f i + 2(xSi

− xP )
T

(∑
j∈S

JSjif i +
∑
l∈D

JDliuDl

)
(10)

where the jacobians are defined as JSji := ∇xSj
f i(x) and JDli := ∇xDl

f i(x)

Note that (10) contains the velocity terms of all dogs. In [9], we leveraged this
observation to obtain a linear constraint on the velocity of all dogs collectively
for preventing sheep Si from breaching P:

AH
i uall

D ≤ bHi , where (11)

AH
i := (xP − xSi)

T
[
JD1i, JD2i, · · · , JDni

]
bHi := fT

i f i + (xSi − xP )
T
∑
j∈S

JSjif j + α(xSi − xP )
Tf i + β

h

2

A centralized algorithm was developed that collectively computes the velocities
of all dogs using the following QP

uall
D = argmin

uall
D

∥uall
D ∥2

subject to AH
i uall

D ≤ bHi ∀i ∈ S. (12)

Building on this centralized approach, in this paper, we develop two distributed
approaches wherein we allow each dog to compute its velocity locally such that
the computed velocities will make the dog herd the sheep away from P.
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4.1 Approach 1: One dog to one sheep allocation based approach

In this approach, we assume that we have an equal number of dogs and sheep.
By exploiting this equality, we assign a unique sheep Si for i ∈ {1, · · · , n} to
a unique dog Dk for k ∈ {1, · · · , n} and make Dk responsible for herding Si

away from P. In other words, Dk computes a velocity uDk
that repels Si from

P thereby ensuring that xSi
(t) /∈ P ∀t ≥ 0. The premise is that owing to the

equality, each sheep will end up being herded by a unique dog, therefore, no sheep
will breach the protected zone 2. Now while this strategy necessitates having an
equal number of dogs and sheep, the benefit of this approach stems from the
feasibility guarantee (that we prove shortly), which the centralized approach
lacks. Simple algebraic manipulation of constraint (11) yields a constraint on
the velocity of Dk as follows

AH
i uDk

≤ bHi , where (13)

AH
i := (xP − xSi)

T JDki

bHi := fT
i f i + (xSi − xP )

T
{∑
j∈S

JSjif j + αf i + β
h

2
+
∑

l∈D\k

JDliuDl

}
Here AH

i ∈ R1×2 and bHi ∈ R. The term uDl
in the expression of bHi is computed

by using numerical differentiation of the positions xDl
. We pose a QP to obtain

the min-norm velocity for Dk as follows

u∗
Dk

= argmin
uDk

∥uDk
∥2

subject to AH
i uDk

≤ bHi (14)

The obtained velocity u∗
Dk

guarantees that the protected zone P will not be
breached by sheep Si by ensuring that h(xSi(t)) ≥ 0 ∀t ≥ 0. Since each dog
in D is in-charge of herding exactly one sheep in S, feasibility of (13) ∀k ∈ D
would ensure no sheep breaches P. Next, we show the conditions under which
(14) remains feasible but first state some assumptions.

Assumption 3. We make the following assumptions on the distances between
pairs of agents:

1. There exists a lower bound and upper bound on the distance between any pair
of sheep, i.e, LS ⩽

∥∥xSi
− xSj

∥∥ ⩽ MS, ∀i, j ∈ S and i ̸= j.
2. There exists a lower bound on the distance between every sheep and dog, i.e.,

∥xSi
− xDk

∥ ≥ LD ∀i ∈ S and k ∈ D.
3. There exists a upper bound on the distance between each sheep and its goal

i.e., ∥xSi − xG∥ ⩽ MG and between the sheep and the center of the protected
zone i.e., ∥xSi − xP ∥ ⩽ MP .

2 Note that although Si is assigned to Dk, the position of the remaining dogs
{1, · · · , n}\k and the remaining sheep {1, · · · , n}\i do influence Dk’s constraint pa-
rameters (AH

i , bHi ), and in turn, its computed velocity u∗
Dk

.
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Theorem 1. In a scenario with ‘n’ dogs and ‘n’ sheep, with each dog assigned
a unique sheep, the herding constraint (13) for a given dog is always feasible,
provided assumptions 3 are met.

Proof. See appendix (section 7).

4.2 Approach 2: Iterative distributed reformulation of (12)

The distributed formulation proposed in (14) comes with a feasibility guarantee
ensuring that all sheep will be herded away from P. While vital, this comes at
the cost of requiring as many dog robots as the number of sheep agents. This
is because, in a way, this equality ensures that controlling the sheep from the
perspective of dog robots is not an underactuated problem. Be that as it may,
in our simulations and experiments involving the centralized approach with an
equal number of dogs and sheep, we frequently observed that not all dog robots
needed to move to repel the sheep away from P i.e., equality may have been an
overkill. Thus, in terms of budget efficiency, at least empirically, the centralized
approach outweighs the distributed approach.

This raises the question, can we convert the centralized algorithm of (12) into
a distributed version that inherits the budget efficiency (optimality) promised by
(12)? Indeed, we found out that [10,11] propose algorithms to convert constrained-
coupled convex optimization problems (such as (12)) into distributed counter-
parts. They combine techniques called dual decomposition and proximal min-
imization and develop iterative distributed schemes which consist of local op-
timization problems. The solutions to these optimization problems asymptoti-
cally converge to the solution of centralized optimization under mild convexity
assumptions and connectivity properties of the communication network. In our
case, this network refers to the communication between dog robots. Below, we
present the distributed dual sub-gradient method of [10,11] adapted to the costs
and constraints of (12). This algorithm calculates an estimate of dog Dk’s ve-
locity ûDk

which, given large enough iterations Kmax, matches with the kth

velocity component in the optimal velocities u∗all
D returned by (12). Ak ∈ RnS×2

refers to those columns of AH that correspond to uDk
in uall

D .

Algorithm 1 Distributed Dual Subgradient for (12) (based on sec. 3.4.2 in [11])

1: Initialize Lagrange Multiplier: µ0
k = 0 ∈ RnS

2: Evolution: t = 1, 2, · · · ,Kmax

3: Gather Multipliers µt
r from Dr ∀r ∈ {1, · · · , nD}\k

4: Average Multipliers: vt+1
k = 1

nD

∑
r∈{1,··· ,nD}\k µ

t
r

5: Local Solution: ut+1
Dk

= argmin
u

∥u∥2 + (vt+1
k )T (Aku− 1

nD
bH) = − 1

2
AT

k v
t+1
k

6: Update Multiplier: µt+1
k =

[
vt+1
k + γt

(
Aku

t+1
Dk

− 1
nD

b
)]

+

7: Return Average: ûDk = (1/Kmax)
∑Kmax

t=1 ut
Dk
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5 Results

In this section, we provide simulation and real-world experimental results demon-
strating our proposed distributed algorithms.

5.1 Simulation Results

We first validate the first distributed algorithm and the feasibility proof given
in 4.1. For this, we model the sheep with the Reynolds-Boids dynamics (1) with
gains kS = 0.5, kG = 1 and kD = 0.1. The dogs use (14) to compute their
velocities, where hyperparameters α and β are computed following (5) and (7).
We chose a circular protected zone of radius Rp = 0.6m and center xP at origin.
The sheep are initialized outside of the protected zone, and their goal location xG

is chosen such that their nominal trajectory would make them breach the zone,
thus necessitating intervention from dogs. The positions of dogs are initialized
randomly within a certain range of the protected zone. In figures 1(a) and 1(b),
we show two examples involving a) two dog robots vs. two sheep robots and b)
three dog robots vs. three sheep robots. To demonstrate the compositionality of
our approach, we consider two protected zones in figure 1(c) where we have four
dogs defending both zones from four sheep. In all these simulations, none of the
sheep breach any zone, thus demonstrating the correctness of our approach. In
the interest of space, we skip the simulation results for the algorithm in 4.2 but
do provide experimental results.

(a) Two dogs v. two sheep. (b) Three dogs v. three sheep (c) Four dogs v. four sheep.

Fig. 1: Preventing the breaching of the protected zone using our proposed dis-
tributed algorithm in section 4.1. Here dogs are shown in blue and sheep in red.
The green disc represents the protected zone. The nominal task of the sheep is
to go straight towards goal xG. However, since this would result in infiltration
of the protected zone, the dog intervenes using the control algorithm presented
in (14). In Fig. 1(c), we defend two protected zones from four sheep.
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5.2 Robot Experiments

In this section, we show the results obtained by performing robot experiments
by implementing the distributed algorithms of section 4.1 and section 4.2. Ad-
ditionally, we also present more experimental results for our prior centralized
algorithm from [9] (because at the time, we did not have as many robots). We
conduct these experiments in our lab’s multi-robot arena, which consists of a
14ft × 7ft platform with multiple Khepera IV robots and eight Vicon cameras
for motion tracking. Although Khepera robots have unicycle dynamics, [9] con-
sists of a technique to convert the single-integrator dynamics (assumed for dogs
and sheep) to linear and angular velocity commands for the robots.

First of all, to build upon our previous work, we show additional experiments
using centralized velocity computation of the dog robots (12). Figure 2 shows a
case with 2 dog and 4 sheep robots. The dog robots have a green tail, and the
sheep robots have an orange tail. The tails are pointing in the opposite direction
of the robot’s heading angle. The protected zone is the green-colored circular re-
gion. This figure shows the performance in the case of an underactuated system,
i.e, there are more sheep against less number of dogs. Another example is shown
in figure 3 where 3 dogs successfully prevent breaching against 5 sheep robots.

Following that, multiple experiments were conducted using the distributed
algorithm presented in section 4.1, which requires equal numbers of dogs and
sheep. Figure 4 shows 4 dog robots against 4 sheep robots scenario. Here we
take two protected zones and show that the dogs can protect both of them. This
highlights the compositional nature of our proposed algorithm. We conducted
experiments with 5 dog robots and 5 sheep robots, as shown in Figure 5. Here we
can see some dog robots did not require to move as the assigned sheep were being
prevented from entering the protected zone due to the configuration of the flock
itself. Finally, we test our distributed algorithm presented in section 4.2. Figure 6
shows a case where 2 dogs prevent the breaching of protected zone against three
dogs. This highlights that our distributed approach can handle under-actuated
scenarios. Figure 7 and figure 2 can be compared to see both centralized and
distributed algorithm handling a similar scenario of 2 dogs against 4 sheep.

6 Conclusions

In this paper, we developed a novel optimization-based distributed control tech-
niques to enable multiple dog robots to prevent the breaching of protected zones
by sheep agents. We provided proof of feasibility of the controller when n dog
robots face an equal number of sheep robots. Additionally, we developed another
distributed algorithm that iteratively computes a solution that agrees with the
solution returned by the centralized problem without requiring equal number of
dogs and sheep. We experimentally validated both distributed algorithms in ad-
dition to validating our previously developed centralized control. We show that
multiple dog robots can prevent breaching of protected zone in both simulation
and real-world experiments. In future work, we aim for the dog robots to learn
the dynamics of the sheep robots online while preventing them from breaching.



10 Nishant Mohanty∗, Jaskaran Grover∗, Changliu Liu, Katia Sycara

(a) t = 0s (b) t = 5s

(c) t = 12s (d) t = 30s

Fig. 2: Experiments for Centralized Control: Two dogs defending the pro-
tected zone from four sheep using centralized control algorithm (12) from our
prior work [9]. Video at https://bit.ly/3OTAnOu.

(a) t = 0s (b) t = 5s

(c) t = 30s (d) t = 50s

Fig. 3: Experiment for Centralized Control: Three dogs (green-tailed
robots) defending a protected zone from five sheep (orange-tailed robots) us-
ing centralized control (12) from our prior work [9]. Video at https://youtu.be/
2 Xuxnd9jZw.

https://bit.ly/3OTAnOu
https://youtu.be/2_Xuxnd9jZw
https://youtu.be/2_Xuxnd9jZw
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(a) t = 0s (b) t = 6s

(c) t = 12s (d) t = 20s

Fig. 4: Experiment for the distributed algorithm in section 4.1 : Four
dogs (green-tailed robots) defending two protected zone from four sheep (orange-
tailed robots). The goal position xG (red disc) is in extreme left that would
encourage sheep to breach both zones. However, our proposed algorithm moves
the dogs so that none of the zones get breached. Video at https://bit.ly/3yo9ziC.

(a) t = 0s (b) t = 12s

(c) t = 25s (d) t = 40s

Fig. 5: Experiment for the distributed algorithm in section 4.1) : Five
dogs (green-tailed robots) defending the protected zone from five sheep (orange-
tailed robots). The sheep’s goal (red disc) is in the center of the protected zone.
Eventually, in this scenario a deadlock occurs where all sheep come to a stop
outside the protected zone. Video at https://bit.ly/3o51Cu1.

https://bit.ly/3yo9ziC
https://bit.ly/3o51Cu1
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(a) t = 0s (b) t = 4s

(c) t = 15s (d) t = 30s

Fig. 6: Experiment for distributed algorithm in section 4.2) : Two dogs
(green-tailed robots) defending the protected zone from three sheep (orange-
tailed robots). The goal position xG (red disc) is at the center of the zone. Video
at https://youtu.be/IbCjkR1ye0c.

(a) t = 0s (b) t = 4s

(c) t = 15s (d) t = 30s

Fig. 7: Experiment for distributed algorithm in section 4.2) : Two dogs
(green-tailed robots) defending the protected zone from four sheep (orange-tailed
robots). This case is similar to the one shown in fig. 2. Video at https://youtu.
be/51FoHZWFYC4.

https://youtu.be/IbCjkR1ye0c
https://youtu.be/51FoHZWFYC4
https://youtu.be/51FoHZWFYC4
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7 Appendix: Proof of feasibility for Approach 1

Theorem 1. In a scenario with ‘n’ dogs and ‘n’ sheep, with each dog assigned
a unique sheep, the herding constraint (13) for a given dog is always feasible,
provided assumptions 3 are met.

Proof. Our strategy to guarantee feasibility of constraint (13) relies on ruling
out situations in which it is infeasible. (13) can become infeasible

– either when AH
i = 0 and bHi < 0 (possibility 1)

– or when bHi = −∞ (possibility 2).

To determine the conditions in which possibility 1 occurs, we calculate the de-
terminant of JDki as

det(JDki) =
−2k2D

∥xDk
− xSi∥3

The determinant det(JDki) is non-zero as long as the distance between dog Dk and
sheep Si is finite. Therefore, JDki will have no null space, implying that AH

i ̸= 0
∀xSi

∈ R2,xDk
∈ R2. This rules out possibility 1 for infeasibility. To rule out

possibility 2, we need to check for condition when bHi −→ −∞. Given bHi in (13),
we find its worst case lower bound. Here fT

i f i ≥ 0 and as we assume that at
the current time step, the sheep is outside P, this ensures β h

2 ≥ 0. By removing
these terms, the lower bound of bHi can be given as

bHi ≥
∑

j∈S\i

(xSi
− xP )

T JSjif j + (xSi
− xP )

T JSiif i +
∑

l∈D\k

(xSi
− xP )

T JDliuDl

+ α(xSi − xP )
Tf i (1)

Using the triangle inequality on the RHS and Cauchy-Schwarz inequality on
individual terms, we get

bHi ≥
∑

j∈S\i

(
−σmax

(
JSji
)
∥xSi

− xP ∥ ∥f j∥
)
− σmax

(
JSii
)
∥xSi

− xP ∥ ∥f i∥ (2)

+
∑

l∈D\k

(
−σmax

(
JDli
)
∥xSi

− xP ∥ ∥uDl
∥
)
− α∥xSi

− xP ∥∥f i∥

where σmax is the largest singular value of a matrix. Further, using the fact that
the largest singular value of a matrix (σmax) is upper bounded by its Frobenius
norm (σF ), we obtain

bHi ≥
∑

j∈S\i

(
−σF

(
JSji
)
∥xSi

− xP ∥ ∥f j∥
)
− σF

(
JSii
)
∥xSi

− xP ∥ ∥f i∥ (3)

∑
l∈D\k

(
−σF

(
JDki
)
∥xSi

− xP ∥ ∥uDl
∥
)
− α∥xSi

− xP ∥∥f i∥

Now to compute this lower bound we make use of assumption 3. We use the
dynamics in (1) to compute JSii and obtain the upper bound on σF

(
JSii
)
and use

the bounds on distances from assumption 3 to get following upper bound:
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σF

(
JSii
)
⩽
∑

j∈S\i

kS

(
√
2 +

(3 +
√
2)R3

∥xSi − xSj∥3

)
+

√
2kG +

∑
l∈D\k

(
3 +

√
2
)
kD

∥xSi
− xDl

∥3

⩽ (n− 1)

(
√
2kS +

(3 +
√
2)kSR

3

L3
S

)
+
√
2kG + n

((
3 +

√
2
)
kD

L3
D

)
:= λM

We omit the proof of this computation in the interest of space. Similarly, using
the dynamics in (1), we compute an expression for JSji and obtain an upper

bound on σF

(
JSji
)
as follows:

σF

(
JSji
)
⩽

√
2kS +

(3 +
√
2)kSR

3

∥xS1
− xSj

∥3
⩽

√
2kS +

(3 +
√
2)kSR

3

L3
S

:= λS

Likewise, an upper bound of σF

(
JSli
)
, is given by

σF

(
JSli
)
⩽

(3 +
√
2)kSR

3

∥xS1 − xDl
∥3

⩽
(3 +

√
2)kSR

3

L3
D

:= λD

Lastly, we use obtain an upper bound on the dynamics of each sheep f i as:

∥f i∥ ⩽
∑

j∈S\i

kS

(
∥xSi

− xSj
∥+ R3

∥xSi
− xSj

∥2

)
+ kG∥xG − xSi

∥

+
∑
l∈D

kD
∥xSi

− xDl
∥

∥xSi
− xDl

∥3
(4)

Now we need to compute the maximum possible value of the RHS to get the
upper bound of the sheep dynamics. The first term has a local minima at ∥xSi −
xSj

∥ = (2)1/3R. Therefore the maximum value can occur at either the lower
bound or upper bound of ∥xSi

− xSj
∥. Thus the maximum value of the first

term can be given as Fmax := max(kSLS + kS
R3

L2
S
, kSMS + kS

R3

M2
S
). Second term

is maximum when ∥xG −xSi
∥ = MG. The last term is maximum when distance

of the sheep to the dogs are minimum, ∥xSi
−xDk

∥ = LD. Using these the upper
bound on the sheep dynamics is computed as:

∥f i∥ ⩽ (n− 1)Fmax + kGMG + nkD

(
1

L2
D

)
Assuming that the velocity of the dog robots have an upper bound, and by
taking the upper bound on the dynamics of all the sheep to be equal, the lower
bound on bHi from 3 is (taking γ = −(α+ λM + (n− 1)λS)Mp)

bHi ⩾ γ

{
(n− 1)Fmax + kGMG +

nkD
L2
D

}
− (n− 1)λDMP ∥uD∥max

This shows that bHi has a finite lower bound, thus ruling out possibility 2. Thus,
the herding constraint (13) for a one dog to repel one sheep from the protected
zone is always feasible. Since each sheep in S is allocated to one unique dog in
D, extension of this feasibility result to all sheep ensures that none of them will
breach the protected zone.
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