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Abstract— In this paper, we consider the problem of pro-
tecting a high-value unit from inadvertent attack by a group of
agents using defending robots. Specifically, we develop a control
strategy for the defending agents that we call “dog robots” to
prevent a flock of “sheep agents” from breaching a protected
zone. We take recourse to control barrier functions to pose
this problem and exploit the interaction dynamics between the
sheep and dogs to find dogs’ velocities that result in the sheep
getting repelled from the zone. We solve a QP reactively that
incorporates the defending constraints to compute the desired
velocities for all dogs. Owing to this, our proposed framework is
composable i.e. it allows for simultaneous inclusion of multiple
protected zones in the constraints on dog robots’ velocities.
We provide a theoretical proof of feasibility of our strategy
for the one dog/one sheep case. Additionally, we provide
empirical results of two dogs defending the protected zone
from upto ten sheep averaged over a hundred simulations and
report high success rates. We also demonstrate this algorithm
experimentally on non-holonomic robots. Videos of these results
are available at https://tinyurl.com/4dj2kjwx.

I. INTRODUCTION

In the last decade, multi-robot systems (MRSs) have
advanced from being researched in labs to being deployed
in the real-world for solving practical problems [1], [2], [3].
The redundancy offered by an aggregated system provides
resilience to faults and distributed acquisition of information.
Several control algorithms have been developed that make
multiple robots come together to solve team-level, global
tasks using local interaction rules [4], [5]. These algorithms
are (a) local (i.e. individual robots act on information locally
available to them), (b) safe (i.e. result in collision-free mo-
tions amongst robots) and (c) emergent (i.e. global properties
result from using local interaction rules) [6].

These characteristics can be treated as the insider’s per-
spective i.e. principles borne in mind by the control en-
gineer when programming their own robots for a given
task. Complementary to this is the outsider’s perspective
i.e. the perspective of an external agent watching a group
carry out a task by executing motions consistent with these
characteristics [7]. Viewing the the motion of a group
from the vantage point of an external observer is equally
important. For example, if group is adversarial, potentially
by posing a threat to a high-value unit, then the observer
must predict the group’s motion and conscript robots (the
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(a) Preventing breaching of pro-
tected zone

(b) Preventing escape from pro-
tected zone

Fig. 1: Demonstration of our results showing (a) how to
prevent sheep (red) from breaching a protect zone (green)
and (b) preventing sheep (red) from escaping the protected
zone using dog robots (blue).

defenders) to defend the unit [8], [9]. This requires the
observer to orchestrate motions for their robots to prevent
breach of the high-value unit. In this paper, we investigate
how to develop provably correct control inputs for a group
of defenders (“dog robots”) to prevent another group (the
“sheep agents”) from breaching a protected zone. This is a
challenging problem because the dog robots cannot directly
command the actuators of the sheep agents, they must rely
on their interaction dynamics (collision-avoidance behavior)
with the sheep agents to influence the sheep’s behavior. This
results in a non-collocated control problem. Additionally,
this is also challenging because usually there are not as
many defending robots as agents in the herd. Therefore, from
the perspective of the dog robots, the control problem can
become highly underactuated.

In this paper, we investigate how to solve this problem
using ideas from control barrier functions. Specifically, we
develop a centralized control technique that computes veloc-
ity inputs for the dog robots to ensure that the sheep agents
do not breach a protected zone. We convert these require-
ments to constraints on the velocities of the dog robots. Our
proposed framework is compositional in nature i.e. we can
consider more sheep as well as more protected zones by
just adding more constraints on the velocities. Furthermore,
our approach relies on using automatic differentiation and
symbolic computation tools, owing to which, we can easily
change behavioral requirements from the sheep. For example,
instead of preventing them from breaching a protected zone
(Fig. 1(a)), we can prevent them from escaping a zone (Fig.
1(b)). We provide numerical results showing the success of
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our approach for multiple dogs v/s multiple sheep agents.
Additionally, to test the repeatability of our algorithm, we
conduct Monte Carlo simulations with increasing number of
dogs and sheep averaged over 100 runs each and show high-
success rates. Finally, we demonstrate our algorithm on real
robots and demonstrate that we can prevent breaching of
multiple zones from two sheep using one dog robot.

The outline of this paper is as follows: in section II we
briefly review the prior work in this area. In section III, we
give a mathematical formulation of the problem statement.
In section IV, we show how to use control barrier functions
to derive constraints on velocities of dog robots to pose
the requirement of defense against the sheep. We consider
additional collision avoidance constraints on dog robots’
velocities. In section V, we provide both simulation as well
as experimental results demonstrating our approach. Finally,
we summarize in section VI with directions for future work.

II. PRIOR WORK

Influencing group behavior has applications beyond just
the adversarial context. For example, shepherding behaviors,
specifically, are one class of flocking behaviors in which one
or more external agents (called shepherds) attempt to control
the motion of another group of agents (called a flock) by
exerting repulsive forces on them [10], [11]. A successful
practical demonstration of robotic herding was achieved in
the Robot Sheepdog Project [12], [13]. Here an autonomous
wheeled mobile robot (the external agent/shepherd) was used
to gather a flock of ducks and manoeuvred them to a
specified goal position.

Several prior works have considered the problem of non-
cooperative shepherding using robots. Some of these include
[11],[14],[15],[16],[17],[18]. They refer to the shepherding
problem as noncooperative because the flock agents are not
necessarily adversarial i.e. they do not work against the
robots, but at the same time are not cooperative because
the flock agents repel from the robots. These works exploit
this repulsive interaction to develop feedback controllers for
the robots to steer the flock agents to a designated region.
While successful, one issue common among these works is
that they fail to consider the self-motivated dynamics of the
flock agents i.e. their nominal dynamics without any robots
in the picture. As a result, the flock agents’ motions are solely
driven by repulsions from the robots. Additionally, these
approaches tend to be handcrafted for generating a specific
behavior in the sheep, for example: herding to a given
location. Finally, many papers do not consider scalability
with respect to the number of agents.

Differently from prior work, we do not omit the self-
motivated dynamics in the sheeps’ motions. We synthesize
the inputs for the dogs while considering cohesion, inter-
sheep and dog/sheep repulsions and the sheep agents’ at-
traction to their goal (the self-motivated part). Moreover,
our proposed approach uses control barrier functions which
only requires expected behaviors from sheep to be expressed
as symbolic functions. Using automatic differentiation, we
can generate constraints on dog velocities for any given

behavioral requirement from the sheep. Lastly, in our Monte
Carlo study, we obtain high success rates even when there
are many more sheep than the number of dog robots in the
system. This provides an empirical evidence of scalability of
our approach.

III. PROBLEM FORMULATION

Suppose there are n “sheep” agents (the herd) and m
dog robots (the defenders). We assume that the sheep are
exhibiting flocking dynamics i.e. moving towards a common
goal while staying close enough to each other and repelling
from the dogs. Given this dynamics, it is possible that while
en-route to their goal, they end up breaching a high-value
unit i.e. the protected zone. From the perspective of the dogs,
the sheep represent a non-cooperative group because they are
not intentionally aiming towards the protected zone but may
inadvertently end up breaching it. Therefore, the objective of
the dog robots is to steer the sheep away from the protected
zone. Let us pose this requirement mathematically.

Denote the position of the ith sheep as xSi
∈ R2

and the collective positions of the herd as xallS :=
(xS1

,xS2
, ...,xSn

). Likewise, we denote the position of the
kth dog as xDk

∈ R2 and the collective positions of the
defending robots’ group as xallD := (xD1 ,xD2 , ...,xDm). We
assume both sheep and dogs have single-integrator dynamics
i.e. they are velocity controlled. For the ith sheep, we have:

ẋSi
= uSi

(1)

= kS
∑
j∈S

(
1− R3

S∥∥xSj − xSi

∥∥3
)
(xSj

− xSi
)

+ kG (xG − xSi
) + kD

∑
k∈D

xSi
− xDk

‖xSi
− xDk

‖3

:= f i(xS1
, ...,xSn

,xD1
, ...,xDn

) (2)

Here the first term represents cohesion of the flock, the
second represents attraction to goal and the third represents
repulsion from dog robots. The attraction to the goal repre-
sents the self-motivated part of the dynamics of the sheep
agents. This term is often neglected in prior work. RS is
the safety radius for sheep i to avoid collisions with the
other sheep, xG is its desired goal position (common for all
sheep) and kS , kG, kD are proportional gains corresponding
to forces in the dynamics. For each dog we have:

ẋDk
= uDk

∀k ∈ {1, 2, · · · ,m} (3)

We denote the protected zone as P ⊂ R2 and for this paper,
assume that it is a disc centered at xp and radius Rp:

P := {x ∈ R2| ‖x− xp‖ ≤ Rp} (4)

We denote the set excluding the protected zone as Pc :=
R2\P . The sheep are assumed to have no knowledge about
the presence of P . The dog robots need to ensure that
the sheep remain in Pc if they are initially in Pc by
finding suitable control inputs {uD1 , · · · ,uDm}. We make
the following assumption on the dog’s knowledge before
posing the problem:
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Assumption 1. The dog robots have knowledge about the
sheep’s dynamics i.e. (1) and can measure the sheep’s
positions accurately.

This is not a stringent assumption because if the dynamics
are unknown, the dog robots can learn the dynamics online
using multiagent system identification algorithms, some of
which we have developed in our prior work [19], [20] and
use certainty equivalence to design the controllers. We can
pose the dog robots’ problem as follows:

Definition 1. Assuming that the initial positions of the sheep
xallS (0) ∈ Pc, the dog robots’ problem is to synthesize
controls {uD1

, · · · ,uDm
} such that xallS (t) ∈ Pc ∀t ≥ 0.

If xallS (0) /∈ Pc, the dog robots’ problem is to synthesize
controls {uD1

, · · · ,uDm
} such that xallS (t) Pc in a finite

time.

Additionally, we require that the dog robots never collide
with the sheep. In the next section, we show how to address
this problem using control barrier functions.

IV. CONTROLLER DESIGN

In this section, we discuss our proposed approach to solve
the problem of defending the protected zone as stated before.
Given the protected zone as defined (4), we first pose the
requirement for defending against one sheep, say sheep i
located at xSi . Subsequently, we will generalize this to the
rest of the sheep in the herd. For this sheep, define a safety
index h(·) : R2 −→ R as follows:

h = ‖xSi − xp‖2 −R2
p (5)

By construction, h ≥ 0 ∀xSi
∈ Pc i.e. non-negative

whenever i is on the boundary or outside the protected zone.
Thus, assuming that at t = 0, h(xSi(0)) ≥ 0, we require
h(xSi

(t)) ≥ 0 ∀t ≥ 0. Treating h(·) as a control barrier
function [21], this can be achieved if the derivative of h(·)
satisfies the following constraint:

ḣ(xS1
, · · · ,xSn

,xD1
, · · · ,xDm

) + p1h(xSi
) ≥ 0

=⇒ 2(xSi − xp)
T ẋSi + p1h(xSi) ≥ 0

=⇒ 2(xSi
− xp)

Tf i + p1h(xSi
) ≥ 0 (6)

Define x = (xallS ,xallD ), we rewrite this as

2(xSi
− xp)

Tf i(x) + p1h(xSi
) ≥ 0 (7)

Here p1 is a design parameter that we choose to ensure that

p1 > 0 and p1 > −
ḣ(x(0))

h(x(0))
(8)

The first condition on p1 requires that the pole is real and
negative. The second depends on the initial positions x(0)
of all the sheep and dogs relative to the protected zone. Now
while (6) depends on the positions of the sheep and dogs, it
is the velocities of the dogs that are directly controllable not
their positions (3). Since uallD does not show up in (6), we
define another function v(·) : R2(m+n) −→ R:

v = ḣ+ p1h (9)

Like before, in order to ensure v ≥ 0 is always maintained,
its derivative needs to satisfy

v̇(x) + p2v(x) ≥ 0. (10)

Here p2 is another design parameter which we choose p2 to
ensure that the following is satisfied at t = 0

p2 > 0 and p2 > −
ḧ(x(0)) + p1ḣ(x(0))

ḣ(x(0)) + p1h(x(0))
(11)

Using (9) in (10), we get:

ḧ(x) + (p1 + p2)ḣ(x) + p1p2h(x) ≥ 0

=⇒ ḧ(x) + αḣ(x) + βh(x) ≥ 0 (12)

where we have defined α := p1 + p2 and β := p1p2. The
time derivatives of the control-barrier function h(·) required
in (12) are obtained as:

ḣ(x) = 2(xSi
− xP )

T ẋSi

= 2(xSi
− xP )

Tf i(xS1
, · · · ,xSn

,xD1
, · · · ,xDm

)
(13)

ḧ(x) = 2ẋTSi
ẋSi

+ 2(xSi
− xP )

T

( n∑
j=1

JSjiẋSi
+

m∑
k=1

JDkiuDk

)
= 2fTi f i

+ 2(xSi − xP )
T

( n∑
j=1

JSjif i +
m∑
k=1

JDkiuDk

)
(14)

where JSji and JDki are

JSji := ∇xSj
f i(xS1 , · · · ,xSn ,xD1 , · · · ,xDm)

JDki := ∇xDk
f i(xS1

, · · · ,xSn
,xD1

, · · · ,xDm
)

Note here that ḧ(x) contains the velocities of dogs as we
wanted. Using (13) and (14) in (12), we get the following
linear constraints on dog velocities to ensure that the ith

sheep stays outside the protected zone P:

AHi uallD ≤ bHi , where (15)

AHi := (xP − xSi
)T
[
JD1i JD2i ..... JDmi

]
bHi := fTi f i + (xSi − xP )

T
n∑
j=1

JSjif j

+ α(xSi − xP )
Tf i + β

h

2

To ensure all n sheep stay away from P , we compose
constraints (15) for all the herd as follows:A

H
1
...
AHn

uallD ≤

b
H
1
...
bHn

 =⇒ AHuallD ≤ bH (16)

Here AH ∈ Rn×2m and bH ∈ Rn. Given these constraints
on the dogs’ velocities, we can pose the following QP
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that searches for the min-norm velocities that satisfies these
constraints

u∗allD = argmin
uall

D

∥∥uallD ∥∥2
subject to AHuallD ≤ bH (17)

Here u∗allD are the optimal velocities for all the dog robots
to ensure both defending P and collision avoidance simulta-
neously. By construction, our approach is centralized i.e. it
computes velocities of all dog robots together. Future work
will consider ways to decentralize this approach.
Considering multiple protected zones: While in the above
derivation, we considered preventing the sheep from breach-
ing only one protected zone, we can just as easily consider
another protected zone by formulating similar constraints
AH2 uallD ≤ bH2 on the dogs’ velocities. By augmenting (17)
with these constraints for the other zone, we will be able
to defend both zones from all sheep simultaneously. This
compositionality is a benefit offered by our constraint based
framework. An experimental validation of this is shown in
Fig. 5. In the following discussion, we prove that for the one
dog v/s one sheep case, (17) is always feasible:

Theorem 1. If there is one dog and one sheep, then (17)
always has a solution.

Proof. Let the position of the dog be xD and that of the
sheep be xS . The sheep dynamics can be simplified to

ẋS = f(xS ,xD) = kG (xG − xS) + kD
xS − xD

‖xS − xD‖3
(18)

The only case when (17) does not have a solution is when
the defending constraint is infeasible i.e. when AHuD ≤ bH
is infeasible. This can occur when
• either when AH = 0 and bH < 0 (possibility 1)
• or when bH = −∞ (possibility 2).

For this case AH is:

AH = (xP − xS)
T JD11 (19)

Thus, if JD11 is non-singular, (xP −xS)
T JD11 6= 0. From our

calculations, we find that the determinant of JD11 is

det(JD11) =
−2k2D

‖xD − xS‖3
(20)

As long as the distance between the dog and the sheep is
finite, det(JD11) is always non zero. Thus, there exists no
null space for the jacobian matrix JD11. This implies AH 6=
0 ∀xS ∈ Rn,xD ∈ R2. This rules out possibility 1 for
infeasibility. For possibility 2, we need to examine when
does bH −→ −∞. The expression for bH is:

bH = fTf + (xS − xP )
T JS11f + α(xS − xP )

Tf + β
h

2

We want to find the worst case lower bound of bH . Here
fTf ≥ 0 always. We assume that at the current time step,
the sheep is outside the P , this ensures β h2 ≥ 0.

Assumption 2. Assume that the following bounds hold
‖xS − xG‖ ≤ M1, ‖xS − xP ‖ ≤ M2 and ‖xS − xD‖ ≥
M3.

With these assumptions, we can lower bound bH as
follows:

bH ≥ (xS − xP )
T JS11f + α(xS − xP )

Tf

≥ −(σmax(J11) + α) ‖f‖ ‖xS − xP ‖
≥ −(σF (J11) + α) ‖f‖ ‖xS − xP ‖ (21)

Here ‖f‖ ≤ kG ‖xS − xG‖ + kD
‖xS−xD‖2

using trian-
gle inequality on (18). This gives ‖xS − xP ‖ ‖f‖ ≤
kGM1M2 + kDM2

M2
3

. We can show that σF (J11) ≤ λM :=√
2k2G + 5

k2D
M6

3
+ 2kGkD

M2
3

. Thus, using this, we obtain the
following lower bound for bH

bH ≥ −(λM + α)

(
kGM1M2 +

kDM2

M2
3

)
(22)

This shows that bH is lower bounded and thus does not reach
−∞. Hence possibility 2 is also ruled out. Thus, (17) is
always feasible. �

A. Incorporating collision avoidance constraints

The defending constraints we posed above do not guaran-
tee that the dog robots won’t collide with the sheep. Even
though the sheep dynamics have repulsions from the dogs,
the velocities computed can result in aggressive behavior.
Thus, we augment the defending constraints with additional
constraints to ensure collision free behavior. Following the
approach in [22], we define a pairwise safety index bik(·) :
R2 × R2m −→ R as:

bik(xSi ,xD1 , · · · ,xDm) = ‖xSi − xDk
‖2 −R2

S

=
∥∥xSi

− CkxallD
∥∥2 −R2

S

bik(·) ≥ 0 iff dog k is atleast RS distance away from sheep
i. Here Ck is a matrix defined appropriately to extract the
position of the kth dog from xallD . If bik(xSi

(0),xallD (0)) ≥
0 ∀k ∈ {1, 2, · · · ,m}, we would like to ensure that
bik(xSi(t),x

all
D (t)) ≥ 0 ∀t ≥ 0 and ∀k ∈ {1, 2, · · · ,m}.

This can be achieved by requiring that

ḃik(x) + γbik(x) ≥ 0 ∀k ∈ {1, 2, · · · ,m} (23)

where γ > 0. This gives us a total of m linear constraints
on the velocity of the dog robots for avoiding collisions with
the ith sheep:

ACi u
all
D ≤ bCi (24)

where,

ACi =

 (xSi − xD1)
TC1

...
(xSi

− xDm
)TCm


bCi =


γ
2 b
i1 + (xSi

− xD1
)Tf i

...
γ
2 b
im + (xSi

− xDm
)Tf i

 (25)
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To ensure all collision avoidance with all n sheep1, we
compose constraints (24) for all the herd as follows:A

C
1
...
ACn

uallD ≤

b
C
1
...
bCn

 =⇒ ACuallD ≤ bC (26)

Given the defending (16) and collision avoidance (26) con-
straints on the dogs’ velocities, we compose them together
using the following QP:

u∗allD = argmin
uall

D

∥∥uallD ∥∥2 (27)

subject to AHuallD ≤ bH

ACuallD ≤ bC

Here u∗allD are the optimal velocities for all the dog
robots to ensure both defending and collision avoidance
simultaneously. The cost function penalizes the total speed
of the dog robots, thus encouraging them to minimize their
movement.

V. RESULTS

In this section, we show results of our approach by testing
it on different scenarios consisting of varying numbers of
sheep and dog and varying their initial positions. Addition-
ally, we also run validate these results experimentally. We
perform several experiments with nonholonomic Khepera
robots and demonstrate how our algorithm find velocities for
one dog to simultaneously defend multiple protected zones
from multiple sheep.

A. Numerical Simulation
We represent the protected zone using a circular disc with

radius Rp and its center at the origin i.e. xP = 0. In our
simulations, we purposefully choose the agent’s goal xG =
xP so that the sheep are motivated to breach the protected
zone should the dog robots not interfere. Thus, this is an
adversarial scenario. The initial position xSi(0) of all the
sheep are chosen such that they are all close to each other.
This is done to ensure that the sheep have enough time to
stabilize/cohese as a flock before interacting with the dog
robots. The initial position xallD (0) of the dog robots are
chosen randomly within the area of operation. The sheep’s
velocities are calculated using (1). The values of the gains
in the sheep dynamics were taken as kG = 1, kS = 0.3 and
kD = 0.08.

The velocities of the dog robot was obtained using eqn.
(27). The hyperparameters α, β, γ are tuned satisfy the condi-
tions on the design parameters (8, 11) . Figure 2 shows three
simulation results for this behavior. In these simulations, we
varied the initial position of the sheep (blue), the dog (red),
number of sheep and the number of dogs. As can be noticed
from the pictures, in all three scenarios, the dogs robots able
to successfully intercept the sheep and prevent them from
entering the protected zone while also avoiding collision with
the sheep.

1inter-dog collision avoidance constraints can also be added following
a similar procedure.

B. Monte Carlo Simulations

We further study the performance of the proposed control
strategy by using Monte Carlo simulations with varying
initial configurations and varying number of sheep n and dog
robots m. The values of the constants in sheep dynamics
are kG = 1, kS = 0.3 and kD = 0.08. We vary n and
m from 1 to 10 and for a given pair of (n,m) we run the
simulation for a hundred times with a random initialization of
x0 = (xS1

(0), · · · ,xSn
(0),xD1

(0), · · · ,xDm
(0)) in every

run. Table I reports these results. Each entry of this table
reports the percentage success rate i.e. in how many cases the
sheep were diverted away from the protected zone. As can be
seen, almost all entries are 100, which proves the success of
our algorithm. Further, we considered the impact of including

TABLE I: Performance of the proposed strategy with varying
number of sheep and dog robots. Here, we did not consider
collision avoidance constraints i.e. the dogs were allowed to
run into the sheep.
PPPPPPNS

ND 2 4 6 8 10

2 100 100 100 100 100
4 100 100 100 100 100
6 100 98 100 100 100
8 100 98 100 100 98
10 100 98 98 100 96

collision avoidance constraints. These results are reported in
Table II. Because of additional constraints, it is possible that
collision avoidance conflicts with the defending constraint.
As a result, we do not observe as good successes in this
case compared to when there are no collision avoidance
constraints.

TABLE II: Performance of the proposed strategy with vary-
ing number of sheep and dog robots. Here we considered
collision avoidance constraints in the dynamics of the dogs.
PPPPPPNS

ND 2 4 6 8 10

2 72 99 99 100 100
4 62 74 90 97 100
6 28 83 99 99 100
8 63 82 100 100 100
10 70 79 90 91 94

C. Hardware Experiments

Finally, we tested our algorithm in robots in the multirobot
test arena in our lab. It consists of a 14ft × 7ft platform,
several Khepera IV robots and additionally eight Vicon
cameras for motion tracking. All control inputs are computed
on a desktop and conveyed to the robots over WiFi. While we
developed our algorithms assuming that the dynamics of all
agents are single-integrator based, the robots have unicycle
dynamics given by ẋẏ

θ̇

 =

v cos θv sin θ
ω

 (28)
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(a) Three dog robots v/s three sheep robots. (b) Three dog robots v/s five sheep. (c) Three dog robots v/s three sheep robots.

Fig. 2: Preventing the breaching of the protected zone. In these simulations, the dog is shown in blue and the sheep is shown
in red. The green disc represents the protected zone. The nominal task of the red agent is to go straight towards its goal
xG. However, since this would result in infiltration of the protected zone, the dog intervenes using the control algorithm
presented in (27). In 2(c), we defend two protected zones from three sheep.

(a) t = 0s (b) t = 3s (c) t = 20s (d) t = 55s

Fig. 3: Hardware experiment with one dog robot preventing one sheep from the breaching of the protected zone. The
dog robot is highlighted in blue and the sheep in red. The goal position xG is at the center of the protected zone and
given as a black solid circle. The nominal task of the sheep is to go straight towards its goal xG. However, since this
would result in infiltration of the protected zone, the dog intervenes using the control algorithm presented in (17). Video at
https://tinyurl.com/2p9fjeft.

(a) t = 0s (b) t = 6s (c) t = 26s (d) t = 35s

Fig. 4: Hardware experiment with one dog robot preventing two sheep from the breaching of the protected zone. The dog
robot is highlighted with a blue box and sheep using a red box. The goal position xG is at the center of the protected zone
and shown as a solid black dot. Video at https://tinyurl.com/37rduh43.

(a) t = 0s (b) t = 7s (c) t = 10s (d) t = 14s

Fig. 5: Hardware experiment with one dog robot preventing two sheep from the breaching of two protected zones. The goal
lies in the left most protected zone. Video at https://tinyurl.com/ycuyhwe6.
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Thus, we do a minor adjustment to map the inputs computed
from our algorithms to the angular speed and forward trans-
lational speed of these robots. This is done by considering
a point at a distance d on the xb axis of the body frame of
the robot:

x =

(
x+ d cos θ
y + d sin θ

)
=⇒ ẋ =

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 d

)
︸ ︷︷ ︸

M

(
v
ω

)
= ũ

=⇒
(
v
ω

)
=M−1ũ (29)

For the robots representing the sheep, ũ is obtained from
(1) while for the robots representing the dog, ũ is obtained
from (17). In Fig. 3, we have one sheep (in red box) and one
dog robot (in blue box). The protected zone is highlighted
in green and the goal and center of the protected zone
are the black dot. We use (17) to compute the velocity of
the dog robot and convert it to angular speed and forward
translational speed using (29). As can be noted from the
snapshots, the dog robot is able successfully defend the zone
from the sheep. Next we consider multiple sheep in Fig. 4.
As can be seen from the snapshots, in this case, the dog is
able to defend the zone from both sheep. Finally, in Fig. 5 we
demonstrate that our approach is compositional i.e. we can
have multiple protected zones. In this figure, we purposefully
kept the goal of the sheep in the left most protected zone.
This way, the sheep would be incentivized to breach both
the protected zones. Yet still, our algorithm is able to find
velocities for dogs to defend both the zones from both sheep.

VI. CONCLUSIONS

In this paper, we developed a novel optimization-based
control strategy for a group of dog robots to prevent a
herd of sheep agents from breaching a protected zone. We
have proven the feasibility of the algorithm for the single
dog v/s single sheep case. Empirical results show that our
designed controller can defend the protected zone from a
flock of multiple sheep using multiple dogs as well. The
results also show that the algorithm is composable and
allows us to include multiple protected zones. Future work
will focus on finding design parameters of the constraints
such that the velocities computed by our controller does not
exceed actuator limits. We also aim to perform hardware
experiments with a higher number of sheep and dogs using
Khepera robots. Further, in our current work, we assumed
known dynamics of sheep. In future, we plan to extend
this to the case where we learn their dynamics online while
simultaneously performing defense of the protected zone.
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